import pandas as pd from sklearn.preprocessing import StandardScaler from sklearn import linear_model from sklearn.metrics import r2_score path = 'C:/Users/asus/Desktop/台区电量样本.xlsx' data_B = pd.read_excel(path, header=None) data_B = data_B.iloc x = data_B.iloc[:, 1:19] y = data_B.iloc[:, 0:1] #对数据进行标准化处理 scaler=StandardScaler() scaledx=scaler.fit_transform(x) #线性回归模型 method=linear_model.LinearRegression() getmodel_1=method.fit(x,y) coef_,intercept_=getmodel_1.coef_,getmodel_1.intercept_ print('回归模型的系数为: {},截距为: {}'.format(coef_,intercept_)) #用R平方检验该模型的拟合度 predict_y=getmodel_1.predict(x) R_square=r2_score(y,predict_y) print('R_square is: ',R_square) #得到的值只有0.37,说明该模型不适合预估 #如果可行,就可以预估 把上面的pyton代码转为matlab代码
时间: 2024-04-12 14:27:55 浏览: 124
你可以使用以下的MATLAB代码将上述的Python代码转换成MATLAB代码:
```matlab
path = 'C:\Users\asus\Desktop\台区电量样本.xlsx';
data_B = xlsread(path);
x = data_B(:, 2:19);
y = data_B(:, 1);
% 对数据进行标准化处理
scaledx = zscore(x);
% 线性回归模型
method = fitlm(x, y);
coef_ = method.Coefficients.Estimate(2:end);
intercept_ = method.Coefficients.Estimate(1);
fprintf('回归模型的系数为: %s, 截距为: %s\n', mat2str(coef_), num2str(intercept_));
% 用R平方检验该模型的拟合度
predict_y = predict(method, x);
R_square = 1 - sum((y - predict_y).^2) / sum((y - mean(y)).^2);
fprintf('R_square is: %f\n', R_square); % 得到的值只有0.37,说明该模型不适合预估
```
这段MATLAB代码将读取Excel文件中的数据,进行标准化处理后,使用`fitlm`函数进行线性回归建模,并计算R平方值来评估模型的拟合度。请注意,MATLAB中的索引是从1开始的,所以在取子集数据时索引需要适当调整。
相关问题
import numpy as np import pandas import pandas as pd import matplotlib from sklearn import naive_bayes from sklearn.preprocessing import MinMaxScaler from sklearn.preprocessing import StandardScaler from sklearn.preprocessing import normalize from sklearn.preprocessing import Binarizer from sklearn.impute import SimpleImputer from sklearn.preprocessing import OneHotEncoder import matplotlib.pyplot as plt from sklearn.metrics import roc_curve, auc from sklearn.model_selection import train_test_split from sklearn.linear_model import LogisticRegression from sklearn.metrics import confusion_matrix matplotlib.rc("font", family='Microsoft YaHei') data=pd.read_csv(r'D:\杂货铺\机器学习\银行数据集.csv',header=None)
这段代码导入了一系列的Python库,包括NumPy、Pandas、Matplotlib、scikit-learn等。其中,NumPy是Python科学计算的核心库,Pandas是数据处理的重要库,Matplotlib是绘图库,scikit-learn是机器学习库。接下来,使用Pandas读取一个CSV文件,该文件路径为D:\杂货铺\机器学习\银行数据集.csv,文件没有列名,所以header参数设置为None。
import pandas as pd from sklearn.model_selection import train_test_split from sklearn.neighbors import KNeighborsClassifier from sklearn.preprocessing import StandardScaler
这段代码主要是导入了一些常用的数据处理和机器学习库,包括pandas、sklearn.model_selection、sklearn.neighbors和sklearn.preprocessing。其中pandas库用于数据处理,sklearn.model_selection库用于模型选择和数据集划分,sklearn.neighbors库用于K近邻分类算法,sklearn.preprocessing库用于数据预 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
6 61 62 63 64 65 66 67 68 69 70 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
7 71 72 73 74 75 76 77 78 79 80 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
8 81 82 83 84 85 86 87 88 89 90 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
9 91 92 93 94 95 96 97 98 99 100 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
```
这个结果就是将列名大于 50 小于 60 的部分删除后的新矩阵。
阅读全文
相关推荐

















