network_input = [] network_output = [] for i in range(0, len(notes) - sequence_length, 1): # 循环次数,步长为1 sequence_in = notes[i:i + sequence_length] # 每次输入100个序列,每隔长度1取下一组,例如:(0,100),(1,101),(50,150) sequence_out = notes[i + sequence_length] # 真实值,从100开始往后 network_input.append([pitch_to_int[char] for char in sequence_in]) # 列表生成式 # 把sequence_in中的每个字符转为整数(pitch_to_int[char])放到network_input network_output.append(pitch_to_int[sequence_out]) # 把sequence_out的一个字符转为整数 n_patterns = len(network_input) # 输入序列长度 # 将输入序列的形状转成神经网络模型可以接受的 network_input = np.reshape(network_input, (n_patterns, sequence_length, 1)) # 输入,要改成的形状 # 将输入标准化,归一化 network_input = network_input / float(num_pitch) # 将期望输出转换成{0,1}布尔矩阵,配合categorical_crossentrogy误差算法的使用 network_output = tf.keras.utils.to_categorical(network_output) # keras中的这个方法可以将一个向量传进去转成布尔矩阵,供交叉熵的计算 return network_input, network_output这个代码里有时间步的概念吗

时间: 2024-03-29 11:38:58 浏览: 18
这段代码中确实有时间步的概念。在这段代码中,输入的音符序列被分成多个序列,每个序列包含一个固定长度的音符集合,这个长度就是序列的长度,也就是代码中的sequence_length。然后,每个序列都作为模型的一个时间步输入。在循环中,每次取一个长度为sequence_length的序列作为输入,然后在这个序列后面取一个音符作为输出,这个音符实际上是下一个时间步的输入。 因此,这段代码分割了原始音符序列成为多个长度为sequence_length的序列,将每个序列转换为整数,并将所有的序列作为模型的多个时间步输入。在reshape操作中,第二个维度被设置为sequence_length,表示每个时间步的输入包含一个长度为sequence_length的音符序列。因此,这个代码中的sequence_length就是时间步的概念。
相关问题

def prepare_sequences(notes, n_vocab): sequence_length = 100 pitchnames = sorted(set(notes)) note_to_int = dict((note, number) for number, note in enumerate(pitchnames)) network_input = [] network_output = [] # 创建输入序列和输出序列 for i in range(0, len(notes) - sequence_length, 1): sequence_in = notes[i:i + sequence_length] sequence_out = notes[i + sequence_length] network_input.append([note_to_int[char] for char in sequence_in]) network_output.append(note_to_int[sequence_out]) n_patterns = len(network_input) # 将输入序列转换为 LSTM 的三维格式 network_input = np.reshape(network_input, (n_patterns, sequence_length, 1)) # 将输出序列转换为 one-hot 编码 network_output = np_utils.to_categorical(network_output) return (network_input, network_output)的意思

这段代码是用于将音符序列转换为神经网络的输入和输出格式的函数。具体实现步骤如下: - 确定序列长度,这里是100; - 找到所有不同的音符,并将它们按字典序排序; - 创建一个将音符映射为数字的字典; - 创建两个空列表,分别用于存储输入序列和输出序列; - 遍历整个音符序列,每次取出长度为sequence_length的一段作为输入,以及紧接着这段音符的下一个音符作为输出。将输入序列和输出序列转换为数字序列,并分别加入到之前创建的两个列表中; - 将输入序列转换为LSTM模型需要的三维格式,即 (样本数, 时间步长, 特征数),这里的特征数是1; - 将输出序列转换为one-hot编码,以便于神经网络的训练; - 返回格式化后的输入序列和输出序列。

def prepare_sequences(notes, n_vocab): sequence_length = 100 pitchnames = sorted(set(item for item in notes)) # 将notes元素去重,按照字母顺序排列 note_to_int = dict((note, number) for number, note in enumerate(pitchnames)) # 创建一个字典将音符映射到整数 network_input = [] network_output = [] for i in range(0, len(notes) - sequence_length, 1): sequence_in = notes[i:i + sequence_length] # 输入序列 sequence_out = notes[i + sequence_length] # 输出序列 network_input.append([note_to_int[char] for char in sequence_in]) network_output.append(note_to_int[sequence_out]) # 将输入序列和输出序列转化为整数放入network_列表中 n_patterns = len(network_input) # 获取神经网络的输入数据中有多少个序列 network_input = np.reshape(network_input, (n_patterns, sequence_length, 1)) network_input = network_input / float(n_vocab) # 将网络输入中的每个元素都除以字典中不同字符的数量(即字典大小),以便将它们缩放到0到1之间的范围 network_output = np_utils.to_categorical(network_output) # 将网络输出向量进行one-hot编码,将每个离散的字符都转化为一个向量,以便将其作为神经网络的输出 return (network_input, network_output)

这是一个Python函数,用于将音符序列转换为神经网络的输入和输出序列。该函数接收两个参数:notes和n_vocab。notes是一个包含音符序列的列表,n_vocab是音符字典中不同字符的数量。该函数首先定义了一个序列长度sequence_length,然后使用sorted()函数将notes列表中的元素去除重复后按字母顺序排列,并将排列后的结果保存在pitchnames变量中。接着,该函数创建了一个note_to_int字典,将每个音符映射到一个整数。然后,该函数使用一个for循环将notes序列分割为输入序列和输出序列,并将它们转换为整数,并将它们保存到network_input和network_output两个列表中。最后,该函数使用np.reshape()函数将network_input列表转换为一个numpy数组,并将其除以n_vocab以将其缩放到0到1之间的范围。该函数还使用np_utils.to_categorical()函数将network_output列表转换为one-hot编码的向量,并将其作为神经网络的输出。最后,该函数返回network_input和network_output列表。

相关推荐

def prepare_sequences(notes, num_pitch): # 从midi中读取的notes和所有音符的数量 """ 为神经网络提供好要训练的序列 """ sequence_length = 100 # 序列长度 # 得到所有不同音高的名字 pitch_names = sorted(set(item for item in notes)) # 把notes中的所有音符做集合操作,去掉重复的音,然后按照字母顺序排列 # 创建一个字典,用于映射 音高 和 整数 pitch_to_int = dict((pitch, num) for num, pitch in enumerate(pitch_names)) # 枚举到pitch_name中 # 创建神经网络的输入序列和输出序列 network_input = [] network_output = [] for i in range(0, len(notes) - sequence_length, 1): # 循环次数,步长为1 sequence_in = notes[i:i + sequence_length] # 每次输入100个序列,每隔长度1取下一组,例如:(0,100),(1,101),(50,150) sequence_out = notes[i + sequence_length] # 真实值,从100开始往后 network_input.append([pitch_to_int[char] for char in sequence_in]) # 列表生成式 # 把sequence_in中的每个字符转为整数(pitch_to_int[char])放到network_input network_output.append(pitch_to_int[sequence_out]) # 把sequence_out的一个字符转为整数 n_patterns = len(network_input) # 输入序列长度 # 将输入序列的形状转成神经网络模型可以接受的 network_input = np.reshape(network_input, (n_patterns, sequence_length, 1)) # 输入,要改成的形状 # 将输入标准化,归一化 network_input = network_input / float(num_pitch) # 将期望输出转换成{0,1}布尔矩阵,配合categorical_crossentrogy误差算法的使用 network_output = tf.keras.utils.to_categorical(network_output) # keras中的这个方法可以将一个向量传进去转成布尔矩阵,供交叉熵的计算 return network_input, network_output

def generate_midi(generator, output_file, start_sequence): # 加载模型参数 generator.load_weights('weights.hdf5') # 计算音符和和弦的数量 notes = load_midi(start_sequence) pitchnames = sorted(set(notes)) n_vocab = len(set(notes)) # 准备输入序列 sequence_length = 100 note_to_int = dict((note, number) for number, note in enumerate(pitchnames)) network_input = [] for i in range(0, len(notes) - sequence_length, 1): sequence_in = notes[i:i + sequence_length] network_input.append([note_to_int[char] for char in sequence_in]) # 生成 MIDI 文件 start = np.random.randint(0, len(network_input)-1) int_to_note = dict((number, note) for number, note in enumerate(pitchnames)) pattern = network_input[start] prediction_output = [] for note_index in range(500): prediction_input = np.reshape(pattern, (1, len(pattern), 1)) prediction_input = prediction_input / float(n_vocab) prediction = generator.predict(prediction_input, verbose=0) index = np.argmax(prediction) result = int_to_note[index] prediction_output.append(result) pattern.append(index) pattern = pattern[1:len(pattern)] offset = 0 output_notes = [] # 创建音符和和弦对象 for pattern in prediction_output: # 如果是和弦 if ('.' in pattern) or pattern.isdigit(): notes_in_chord = pattern.split('.') notes = [] for current_note in notes_in_chord: new_note = note.Note(int(current_note)) new_note.storedInstrument = instrument.Piano() notes.append(new_note) new_chord = chord.Chord(notes) new_chord.offset = offset output_notes.append(new_chord) # 如果是音符 else: new_note = note.Note(pattern) new_note.offset = offset new_note.storedInstrument = instrument.Piano() output_notes.append(new_note) # 增加偏移量 offset += 0.5 # 创建 MIDI 流对象 midi_stream = stream.Stream(output_notes) # 保存 MIDI 文件 midi_stream.write('midi', fp=output_file)

最新推荐

recommend-type

新建文本文档.txt

新建文本文档
recommend-type

开源Git gui工具Fork

开源Git gui工具Fork,CSDN能找到教程,但是资料不多,推荐用Tortoise
recommend-type

yolov5在华为昇腾atlas上加速推理

该资源为yolov5在华为昇腾atlas上使用Ascend310芯片加速推理,属于c++后端开发,适合C++开发者在华为昇腾盒子上移植深度学习算法的博主们。 资源是demo形式,包含完整的一套代码,还有转好的离线模型文件和跑出的测试结果图片。
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB柱状图在信号处理中的应用:可视化信号特征和频谱分析

![matlab画柱状图](https://img-blog.csdnimg.cn/3f32348f1c9c4481a6f5931993732f97.png) # 1. MATLAB柱状图概述** MATLAB柱状图是一种图形化工具,用于可视化数据中不同类别或组的分布情况。它通过绘制垂直条形来表示每个类别或组中的数据值。柱状图在信号处理中广泛用于可视化信号特征和进行频谱分析。 柱状图的优点在于其简单易懂,能够直观地展示数据分布。在信号处理中,柱状图可以帮助工程师识别信号中的模式、趋势和异常情况,从而为信号分析和处理提供有价值的见解。 # 2. 柱状图在信号处理中的应用 柱状图在信号处理
recommend-type

HSV转为RGB的计算公式

HSV (Hue, Saturation, Value) 和 RGB (Red, Green, Blue) 是两种表示颜色的方式。下面是将 HSV 转换为 RGB 的计算公式: 1. 将 HSV 中的 S 和 V 值除以 100,得到范围在 0~1 之间的值。 2. 计算色相 H 在 RGB 中的值。如果 H 的范围在 0~60 或者 300~360 之间,则 R = V,G = (H/60)×V,B = 0。如果 H 的范围在 60~120 之间,则 R = ((120-H)/60)×V,G = V,B = 0。如果 H 的范围在 120~180 之间,则 R = 0,G = V,B =
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

MATLAB柱状图在数据分析中的作用:从可视化到洞察

![MATLAB柱状图在数据分析中的作用:从可视化到洞察](https://img-blog.csdnimg.cn/img_convert/1a36558cefc0339f7836cca7680c0aef.png) # 1. MATLAB柱状图概述** 柱状图是一种广泛用于数据可视化的图表类型,它使用垂直条形来表示数据中不同类别或组别的值。在MATLAB中,柱状图通过`bar`函数创建,该函数接受数据向量或矩阵作为输入,并生成相应的高度条形。 柱状图的优点在于其简单性和易于理解性。它们可以快速有效地传达数据分布和组别之间的比较。此外,MATLAB提供了广泛的定制选项,允许用户调整条形颜色、