train_data = 2352 train = veccc_dv[:train_data, :] test = veccc_dv[train_data:, :] train_X = train[:, :6] #数据类型Array of fioat32,形状:2352,6,3 train_Y = train[:, 6:] #数据类型Array of fioat32,形状:2352,6,3 test_X = test[:, :6] #数据类型Array of fioat32,形状:591,6,3 test_Y = test[:, 6:] #数据类型Array of fioat32,形状:591,6,3 # 模型搭建 model = Sequential() input_shape = (train_X.shape[1], train_X.shape[2]) # 修改 input_shape 为输入数据的形状 model.add(LSTM(64, input_shape=input_shape)) model.add(Dense(3, activation='softmax')) model.add(Dropout(0.25)) # 模型编译 model.compile(loss='mean_squared_error', optimizer='adam') # 模型训练 history = model.fit(train_X, train_Y, epochs=50, validation_data=(test_X, test_Y), verbose=3, shuffle=False) #模型预测 yhat = model.predict(test_X) test_X = test_X.reshape((test_X.shape[0], test_X.shape[2]))
时间: 2023-07-15 08:13:33 浏览: 70
这段代码是一个使用Keras搭建的LSTM模型,用于预测一组时间序列数据。首先,将数据集划分为训练集和测试集,train_data=2352 表示使用前2352个数据点作为训练集,剩余的数据点作为测试集。然后,将训练集和测试集分别划分为输入数据(train_X, test_X)和输出数据(train_Y, test_Y)。其中,输入数据是形状为(样本数, 时间步长, 特征数)的三维张量,表示每个样本在不同时间步长上的特征序列。输出数据是形状为(样本数, 特征数)的二维张量,表示每个样本在最后一个时间步长上的目标变量值。接着,使用Sequential()创建一个序列模型,添加一个LSTM层和一个全连接层(Dense),并在全连接层之前添加了一个Dropout层以防止过拟合。模型编译时,使用均方误差作为损失函数(loss),adam作为优化器(optimizer)。在模型训练过程中,使用fit()方法训练模型,并使用verbose参数设定打印训练日志的详细程度。最后,使用predict()方法对测试集进行预测,得到预测结果yhat。
相关问题
train_data = 2352 train = veccc_dv[:train_data, :] test = veccc_dv[train_data:, :] train_X = train[:, :6] train_Y = train[:, 6:] test_X = test[:, :6] test_Y = test[:, 6:] #模型搭建 model = Sequential() input_shape = (6, 3) model.add(LSTM(64, input_shape=input_shape)) model.add(Dense(3, activation='softmax')) model.add(Dropout(0.25)) #模型编译 model.compile(loss='mean_squared_error', optimizer='adam') #模型训练 history = model.fit(train_X, train_Y, epochs=50, validation_data=(test_X, test_Y), verbose=3, shuffle=False) tf.keras.backend.print_tensor(input_shape)请依据错误提示修改代码
根据您提供的错误提示,应该是 input_shape 与输入数据的形状不匹配导致的问题。您可以尝试修改代码如下:
```
train_data = 2352
train = veccc_dv[:train_data, :]
test = veccc_dv[train_data:, :]
train_X = train[:, :6]
train_Y = train[:, 6:]
test_X = test[:, :6]
test_Y = test[:, 6:]
# 模型搭建
model = Sequential()
input_shape = (train_X.shape[1], train_X.shape[2]) # 修改 input_shape 为输入数据的形状
model.add(LSTM(64, input_shape=input_shape))
model.add(Dense(3, activation='softmax'))
model.add(Dropout(0.25))
# 模型编译
model.compile(loss='mean_squared_error', optimizer='adam')
# 模型训练
history = model.fit(train_X, train_Y, epochs=50, validation_data=(test_X, test_Y), verbose=3, shuffle=False)
tf.print(input_shape) # 使用 tf.print 打印 input_shape
```
这里将 input_shape 修改为了 `(train_X.shape[1], train_X.shape[2])`,即输入数据的形状,同时使用 `tf.print` 打印出 input_shape。您可以根据具体情况调整参数。
请根据一下代码补全:vec_dv = vec_dv.apply(lambda x: x.apply(lambda y: y/np.linalg.norm(y))) #转成有监督数据 vecc_dv = series_to_supervised(vec_dv, 1, 1) #转换成模型需要的输入格式,形状为(2943,12,3) veccc_dv = np.float32(np.array(vecc_dv.values.tolist())) #把数据分为训练数据和测试数据 train_data = 2352 train = veccc_dv[:train_data, :] test = veccc_dv[train_data:, :] train_X = train[:, :6] #数据类型Array of fioat32,形状:2352,6,3 train_Y = train[:, 6:] #数据类型Array of fioat32,形状:2352,6,3 test_X = test[:, :6] #数据类型Array of fioat32,形状:591,6,3 test_Y = test[:, 6:] #数据类型Array of fioat32,形状:591,6,3 # 模型搭建 model = Sequential()
请补全以下代码:
```
from keras.models import Sequential
from keras.layers import LSTM, Dense
# 模型搭建
model = Sequential()
model.add(LSTM(units=64, input_shape=(6,3), return_sequences=True))
model.add(Dense(units=3))
model.compile(optimizer='adam', loss='mse')
```
这个模型使用了 LSTM 层来处理时序数据(输入形状为 (6,3)),并输出一个形状为 (6,3) 的张量。其中,units 参数控制 LSTM 层的神经元个数,optimizer 参数控制模型的优化器,loss 参数控制模型的损失函数。在本例中,我们使用了 'adam' 优化器和 'mse' 损失函数。
阅读全文