代码报错,请修正错误:AttributeError: 'LIFNeuron' object has no attribute 'v'
时间: 2023-08-18 12:04:49 浏览: 131
非常抱歉,这个错误是因为在LIFNeuron类中缺少了一个用于存储膜电位的属性v。我会修正代码并重新展示给你。
```python
import numpy as np
import matplotlib.pyplot as plt
from tensorflow.keras.datasets import mnist
# 加载MNIST数据集
(x_train, y_train), (x_test, y_test) = mnist.load_data()
# 对数据进行归一化
x_train = x_train / 255.0
x_test = x_test 255.0
#建LIF神经元模型
class LIFNeuron:
def __init__(self, tau_m, tau_ref, tau_syn):
self.tau_m = tau_m # 膜电位时间常数
self.tau_ref = tau_ref # 绝对不应期时间常数
self.tau_syn = tau_syn # 突触后电流时间常数
self.v_threshold = 1.0 # 阈值电压
self.v_reset = 0.0 # 复位电压
self.ref_counter = 0 # 不应期计数器
self.v = self.v_reset # 膜电位
def update(self, i_inj, dt):
if self.ref_counter > 0: # 如果在不应期内
self.ref_counter -= 1 # 减少不应期计数器
self.v = self.v_reset # 维持复位电压
else:
dv_dt = (-(self.v - self.v_reset) + i_inj) / self.tau_m
self.v += dv_dt * dt
if self.v >= self.v_threshold: # 达到阈值电压
self.v = self.v_reset # 复位电压
self.ref_counter = int(self.tau_ref / dt) # 进入不应期
# 构建脉冲神经网络模型
class SpikingNeuralNetwork:
def __init__(self, num_inputs, num_outputs, tau_m, tau_ref, tau_syn, w_max, w_min, learning_rate):
self.num_inputs = num_inputs
self.num_outputs = num_outputs
self.tau_m = tau_m
self.tau_ref = tau_ref
self.tau_syn = tau_syn
self.w_max = w_max
self.w_min = w_min
self.learning_rate = learning_rate
self.neurons = [LIFNeuron(tau_m, tau_ref, tau_syn) for _ in range(num_outputs)]
self.weights = np.random.uniform(w_min, w_max, size=(num_inputs, num_outputs))
def update_neurons(self, x, dt):
for neuron in self.neurons:
i_inj = np.dot(x, self.weights) # 计算输入电流
neuron.update(i_inj, dt)
def update_weights(self, x_pre, x_post, dt):
dw_dt = np.outer(x_pre, x_post) * dt # 计算权重变化率
self.weights += self.learning_rate * dw_dt # 更新权重
self.weights = np.clip(self.weights, self.w_min, self.w_max) # 限制权重范围
def train(self, x_train, y_train, num_epochs, dt):
for epoch in range(num_epochs):
for x, y in zip(x_train, y_train):
self.update_neurons(x, dt)
x_post = np.zeros(self.num_outputs)
x_post[y] = 1.0
self.update_weights(x, x_post, dt)
def predict(self, x_test):
predictions = []
for x in x_test:
self.update_neurons(x, dt)
pred = np.argmax([neuron.v for neuron in self.neurons])
predictions.append(pred)
return predictions
# 定义训练参数
num_inputs = 784 # 输入神经元数量(MNIST图像大小为28x28)
num_outputs = 10 # 输出神经元数量(0-9的数字类别)
tau_m = 20.0 # 膜电位时间常数
tau_ref = 2.0 # 绝对不应期时间常数
tau_syn = 5.0 # 突触后电流时间常数
w_max = 1.0 # 权重上界
w_min = 0.0 # 权重下界
learning_rate = 0.01 # 学习率
num_epochs = 5 # 训练迭代次数
dt = 0.1 # 时间步长
# 创建脉冲神经网络模型实例
snn = SpikingNeuralNetwork(num_inputs, num_outputs, tau_m, tau_ref, tau_syn, w_max, w_min, learning_rate)
# 训练脉冲神经网络
snn.train(x_train, y_train, num_epochs, dt)
# 在测试集上进行预测
predictions = snn.predict(x_test)
# 计算准确率
accuracy = np.mean(predictions == y_test) * 100
print("准确率:", accuracy, "%")
```
修正后的代码中,我添加了一个属性v来存储膜电位,并在`LIFNeuron`类的构造函数中进行初始化。这样,在神经元更新时,可以通过`neuron.v`来访问膜电位值。
希望这次修改后的代码能够正常运行。如果你还有其他问题,请随时提问!
阅读全文
相关推荐


















