解释 input_logits = tf.keras.Input(shape=(10,))
时间: 2024-05-31 09:08:08 浏览: 99
input_logits = tf.keras.Input(shape=(10,)) 表示创建一个输入层,该层的输入形状为 (batch_size, 10),其中 batch_size 表示每批次输入的数据量。这里的 10 表示输入数据的特征数,即每个输入数据有 10 个特征。这个输入层可以用于构建 Keras 模型,用于输入数据。
相关问题
class CNN(Model): def __init__(self): super(CNN, self).__init__() ## self.x1 = Input(shape =(1024,1,1)) self.inputshape = tf.keras.layers.InputLayer(input_shape=(1024,1,1)) self.c1 = Conv2D(filters=64, kernel_size=(2, 1), activation='relu',input_shape=(1024,1,1)) self.c2 = Conv2D(filters=64, kernel_size=(2, 1), activation='relu') self.c3 = Conv2D(filters=64, kernel_size=(2, 1), activation='relu') self.flatten = Flatten() self.f1 = Dense(360, activation='relu') self.f2 = Dense(184, activation='relu') self.f3 = Dense(4, activation='softmax') def zx(self, input): x = self.inputshape(input.astype(np.float32)) return self.c1(x) def zx1(self, input): x = self.inputshape(input.astype(np.float32)) x = self.c1(x) x = self.c2(x) x = self.c3(x) x = self.flatten(x) print(x.shape) x = self.f1(x) return self.f2(x) def call(self, input): x = self.inputshape(input) x = self.c1(x) x = self.c2(x) x = self.c3(x) x = self.flatten(x) print(x.shape) x = self.f1(x) self.x2 = self.f2(x) y = self.f3(self.x2) return y model = CNN() model.build(input_shape=(None,1024,1,1)) model.compile(optimizer='adam', loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False), metrics=['sparse_categorical_accuracy']) 该CNN模型每层网络的参数如何
这个CNN模型共有5个卷积层和3个全连接层,每个卷积层都使用ReLU激活函数。具体参数如下:
- 输入层:输入形状为(1024,1,1)的张量
- 卷积层c1:使用64个大小为(2,1)的卷积核,步长为(1,1),padding方式为"valid",输出张量形状为(1023,1,64)
- 卷积层c2:使用64个大小为(2,1)的卷积核,步长为(1,1),padding方式为"valid",输出张量形状为(1022,1,64)
- 卷积层c3:使用64个大小为(2,1)的卷积核,步长为(1,1),padding方式为"valid",输出张量形状为(1021,1,64)
- 将输出张量展平为形状为(65504,)的向量
- 全连接层f1:输出向量形状为(360,),使用ReLU激活函数
- 全连接层f2:输出向量形状为(184,),使用ReLU激活函数
- 输出层:输出向量形状为(4,),使用softmax激活函数
帮我把下面这个代码从TensorFlow改成pytorch import tensorflow as tf import os import numpy as np import matplotlib.pyplot as plt os.environ["CUDA_VISIBLE_DEVICES"] = "0" base_dir = 'E:/direction/datasetsall/' train_dir = os.path.join(base_dir, 'train_img/') validation_dir = os.path.join(base_dir, 'val_img/') train_cats_dir = os.path.join(train_dir, 'down') train_dogs_dir = os.path.join(train_dir, 'up') validation_cats_dir = os.path.join(validation_dir, 'down') validation_dogs_dir = os.path.join(validation_dir, 'up') batch_size = 64 epochs = 50 IMG_HEIGHT = 128 IMG_WIDTH = 128 num_cats_tr = len(os.listdir(train_cats_dir)) num_dogs_tr = len(os.listdir(train_dogs_dir)) num_cats_val = len(os.listdir(validation_cats_dir)) num_dogs_val = len(os.listdir(validation_dogs_dir)) total_train = num_cats_tr + num_dogs_tr total_val = num_cats_val + num_dogs_val train_image_generator = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1. / 255) validation_image_generator = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1. / 255) train_data_gen = train_image_generator.flow_from_directory(batch_size=batch_size, directory=train_dir, shuffle=True, target_size=(IMG_HEIGHT, IMG_WIDTH), class_mode='categorical') val_data_gen = validation_image_generator.flow_from_directory(batch_size=batch_size, directory=validation_dir, target_size=(IMG_HEIGHT, IMG_WIDTH), class_mode='categorical') sample_training_images, _ = next(train_data_gen) model = tf.keras.models.Sequential([ tf.keras.layers.Conv2D(16, 3, padding='same', activation='relu', input_shape=(IMG_HEIGHT, IMG_WIDTH, 3)), tf.keras.layers.MaxPooling2D(), tf.keras.layers.Conv2D(32, 3, padding='same', activation='relu'), tf.keras.layers.MaxPooling2D(), tf.keras.layers.Conv2D(64, 3, padding='same', activation='relu'), tf.keras.layers.MaxPooling2D(), tf.keras.layers.Flatten(), tf.keras.layers.Dense(256, activation='relu'), tf.keras.layers.Dense(2, activation='softmax') ]) model.compile(optimizer='adam', loss=tf.keras.losses.BinaryCrossentropy(from_logits=True), metrics=['accuracy']) model.summary() history = model.fit_generator( train_data_gen, steps_per_epoch=total_train // batch_size, epochs=epochs, validation_data=val_data_gen, validation_steps=total_val // batch_size ) # 可视化训练结果 acc = history.history['accuracy'] val_acc = history.history['val_accuracy'] loss = history.history['loss'] val_loss = history.history['val_loss'] epochs_range = range(epochs) model.save("./model/timo_classification_128_maxPool2D_dense256.h5")
import torch import os import numpy as np import matplotlib.pyplot as plt os.environ["CUDA_VISIBLE_DEVICES"] = "0" base_dir = 'E:/direction/datasetsall/' train_dir = os.path.join(base_dir, 'train_img/') validation_dir = os.path.join(base_dir, 'val_img/') train_cats_dir = os.path.join(train_dir, 'down') train_dogs_dir = os.path.join(train_dir, 'up') validation_cats_dir = os.path.join(validation_dir, 'down') validation_dogs_dir = os.path.join(validation_dir, 'up') batch_size = 64 epochs = 50 IMG_HEIGHT = 128 IMG_WIDTH = 128 num_cats_tr = len(os.listdir(train_cats_dir)) num_dogs_tr = len(os.listdir(train_dogs_dir)) num_cats_val = len(os.listdir(validation_cats_dir)) num_dogs_val = len(os.listdir(validation_dogs_dir)) total_train = num_cats_tr + num_dogs_tr total_val = num_cats_val + num_dogs_val train_image_generator = torch.utils.data.DataLoader(torchvision.datasets.ImageFolder(train_dir, transform=transforms.Compose([transforms.Resize((IMG_HEIGHT, IMG_WIDTH)), transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])), batch_size=batch_size, shuffle=True) validation_image_generator = torch.utils.data.DataLoader(torchvision.datasets.ImageFolder(validation_dir, transform=transforms.Compose([transforms.Resize((IMG_HEIGHT, IMG_WIDTH)), transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])), batch_size=batch_size) model = torch.nn.Sequential( torch.nn.Conv2d(3, 16, kernel_size=3, padding=1), torch.nn.ReLU(), torch.nn.MaxPool2d(2), torch.nn.Conv2d(16, 32, kernel_size=3, padding=1), torch.nn.ReLU(), torch.nn.MaxPool2d(2), torch.nn.Conv2d(32, 64, kernel_size=3, padding=1), torch.nn.ReLU(), torch.nn.MaxPool2d(2), torch.nn.Flatten(), torch.nn.Linear(64*16*16, 256), torch.nn.ReLU(), torch.nn.Linear(256, 2), torch.nn.Softmax() ) criterion = torch.nn.CrossEntropyLoss() optimizer = torch.optim.Adam(model.parameters(), lr=0.001) for epoch in range(epochs): running_loss = 0.0 for i, data in enumerate(train_image_generator, 0): inputs, labels = data optimizer.zero_grad() outputs = model(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() running_loss += loss.item() epoch_loss = running_loss / (len(train_data_gen) / batch_size) print('Epoch: %d, Loss: %.3f' % (epoch + 1, epoch_loss)) correct = 0 total = 0 with torch.no_grad(): for data in validation_image_generator: images, labels = data outputs = model(images) _, predicted = torch.max(outputs.data, 1) total += labels.size(0) correct += (predicted == labels).sum().item() print('Validation Accuracy: %.2f%%' % (100 * correct / total))
阅读全文