按照以下要求仅在两个#之间编译该代码As described in the lecture and the optional softmax lab, numerical stability is improved if the softmax is grouped with the loss function rather than the output layer during training. This has implications when building the model and using the model. Building: The final Dense layer should use a 'linear' activation. This is effectively no activation. The model.compile statement will indicate this by including from_logits=True. loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True) This does not impact the form of the target. In the case of SparseCategorialCrossentropy, the target is the expected digit, 0-9. Using the model: The outputs are not probabilities. If output probabilities are desired, apply a softmax function.

时间: 2024-04-09 22:28:47 浏览: 119
Sure, I can help you with that! Here's the code you provided, compiled with the required modifications: ```python import tensorflow as tf # Building the model model = tf.keras.models.Sequential([ tf.keras.layers.Dense(64, activation='relu', input_shape=(input_dim,)), tf.keras.layers.Dense(10, activation='linear') ]) model.compile(optimizer='adam', loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True), metrics=['accuracy']) # Using the model output = model.predict(input_data) # Apply softmax for obtaining probabilities probabilities = tf.nn.softmax(output) ``` Please note that `input_dim` and `input_data` in the code should be replaced with the appropriate values for your specific case. Let me know if you need any further assistance!
阅读全文

相关推荐

Standard SPI Mode Standard SPI mode is selected when the Mode option in the Vivado IDE is set to Standard. The relevant parameters in this mode are: • Mode • Enable STARTUPE2 Primitive • Transaction Width • No. of Slaves • Frequency Ratio Send Feedback AXI Quad SPI v3.2 7 PG153 April 4, 2018 www.xilinx.com Chapter 1: Overview • Enable FIFO The properties of the core in standard SPI mode, including or excluding a FIFO, are described as: • The choice of inclusion of FIFO is based on the Enable FIFO parameter. FIFO Depth parameter is linked to Enable FIFO parameter. FIFO Depth limits the transmit and receive FIFO depth to 16 or 256 when FIFO is enabled. When FIFO is not enabled, the value of FIFO depth parameter is considered to be 0. A FIFO depth of 256 should be used because this is the most suitable depth in relation to the flash memory page size. • The valid values for the FIFO Depth option in this mode are 16 or 256 when FIFO is enabled through Enable FIFO parameter. When Enable FIFO is 0 and no FIFO is included in the core. Data transmission occurs through the single transmit and receive register. When FIFO Depth is 16 or 256, the transmit or receive FIFO is included in the design with a depth of 16 or 256 elements. The width of the transmit and receive FIFO is configured with the Transaction Width option. The AXI Quad SPI core supports continuous transfer mode. When configured as master, the transfer continues until the data is available in the transmit register/FIFO. This capability is provided in both manual and automatic slave select modes. As an example, during the page read command, the command, address, and number of data beats in the DTR must be set equal to the same number of data bytes intended to be read by the SPI memory. When the core is configured as a slave, if the slave select line (SPISEL) goes High (inactive state) during the data element transfer, the current transfer is aborted. If the slave select line goes Low, the aborted data element is transmitted again. The slave mode of the core is allowed only in the standard SPI mode.

7-3 Score Processing 分数 10 作者 翁恺 单位 浙江大学 Write a program to process students score data. The input of your program has lines of text, in one of the two formats: Student's name and student id, as <student id>, <name>, and Score for one student of one course, as <student id>, <course name>, <marks>. Example of the two formats are: 3190101234, Zhang San 3190101111, Linear Algebra, 89.5 Comma is used as the seperator of each field, and will never be in any of the fields. Notice that there are more than one word for name of the person and name of the course. To make your code easier, the score can be treated as double. The number of the students and the number of the courses are not known at the beginning. The number of lines are not known at the beginning either. The lines of different format appear in no order. One student may not get enrolled in every course. Your program should read every line in and print out a table of summary in .csv format. The first line of the output is the table head, consists fields like this: student id, name, <course name 1>, <course name 2>, ..., average where the course names are all the courses read, in alphabet order. There should be one space after each comma. Then each line of the output is data for one student, in the ascended order of their student id, with score of each course, like: 3190101234, Zhang San, 85.0, , 89.5, , , 87.3 For the course that hasn't been enrolled, leave a blank before the comma, and should not get included in the average. The average has one decimal place. There should be one space after each comma. And the last line of the output is a summary line for average score of every course, like: , , 76.2, 87.4, , , 76.8 All the number output, including the averages have one decimal place. Input Format As described in the text above. Output Format As described in the text above. The standard output is generated by a program compiled by gcc, that the round of the first decimal place is in the "gcc way". Sample Input 3180111435, Operating System, 34.5 3180111430, Linear Algebra, 80 3180111435, Jessie Zhao 3180111430, Zhiwen Yang 3180111430, Computer Architecture, 46.5 3180111434, Linear Algebra, 61.5 3180111434, Anna Teng Sample Output student id, name, Computer Architecture, Linear Algebra, Operating System, average 3180111430, Zhiwen Yang, 46.5, 80.0, , 63.2 3180111434, Anna Teng, , 61.5, , 61.5 3180111435, Jessie Zhao, , , 34.5, 34.5 , , 46.5, 70.8, 34.

The readPosInt method uses System.out.print (not println) to print its string argument on the screen (later when we use the readPosInt method, the string argument of the method will be a message telling the user to type some integer). Then the readPosInt method uses the input scanner object to read an integer from the user of the program. After reading the integer, the readPosInt method must also use the scanner’s nextLine method to read the single newline character that comes from the user pressing the Enter key on the keyboard after typing the integer (if you do not read this newline character using the nextLine method inside the readPosInt method, then the newline character will remain in the input stream, and, the next time you use the readLine method described above, the readLine method will just immediately read only the newline character from the input stream and return an empty string as result, without waiting for the user to type anything!) If the user types something which is not an integer, then the nextInt method of the scanner will throw an InputMismatchException. In that case the code of your readPosInt method must catch the exception, use System.out.println to print the error message "You must type an integer!" to the user (use System.out.println for this, not System.err.println, otherwise you might hit a bug in Eclipse...), use the scanner’s nextLine method to read (and ignore) the wrong input typed by the user of the program (if you do not do this, the wrong input typed by the user will remain in the input stream, and the next time you call the nextInt method again, you will get an InputMismatchException again!), and then do the whole thing again (including printing again the string argument of the readPosInt method) to try to read an integer again (hint: put the whole code of the method inside a while loop). After reading the integer and the newline character (which is just ignored), the readPosInt method tests the integer.写java文件

A. Encoding Network of PFSPNet The encoding network is divided into three parts. In the part I, RNN is adopted to model the processing time pij of job i on all machines, which can be converted into a fixed dimensional vector pi. In the part II, the number of machines m is integrated into the vector pi through the fully connected layer, and the fixed dimensional vector p˜i is output. In the part III, p˜i is fed into the convolution layer to improve the expression ability of the network, and the final output η p= [ η p1, η p2,..., η pn] is obtained. Fig. 2 illustrates the encoding network. In the part I, the modelling process for pij is described as follows, where WB, hij , h0 are k-dimensional vectors, h0, U, W, b and WB are the network parameters, and f() is the mapping from RNN input to hidden layer output. The main steps of the part I are shown as follows. Step 1: Input pij to the embedding layer and then obtain the output yij = WB pij ; Step 2: Input yi1 and h0 to the RNN and then obtain the hidden layer output hi1 = f(yi1,h0; U,W, b). Let p1 = h1m ; Step 3: Input yij and hi,j−1, j = 2, 3 ··· , m into RNN in turn, and then obtain the hidden layer output hij = f(yij ,hi,j−1; U,W, b), j = 2, 3 ··· , m. Let pi = him . In the part II, the number of machines m and the vector pi are integrated by the fully connected layer. The details are described as follows. WB and h˜i are d-dimensional vectors, WB W and ˜b are network parameters, and g() denotes the mapping from the input to the output of full connection layer. Step 1: Input the number of machines m to the embedding layer, and the output m = WB m is obtained。Step 2: Input m and pi to the fully connected layer and then obtain the output hi = g([m, pi];W, b); Step 3: Let pi = Relu(hi). In the part III, pi, i = 1, 2,...,n are input into onedimensional convolution layer. The final output vector η pi, i = 1, 2, ··· , n are obtained after the output of convolutional layer goes through the Relu layer.首先逐行仔细的分析此过程,其次怎么使用pytorch用EncoderNetwork类完全实现这个过程的所有功能和步骤

Here are the detail information provided in PPTs:The option is an exotic partial barrier option written on an FX rate. The current value of underlying FX rate S0 = 1.5 (i.e. 1.5 units of domestic buys 1 unit of foreign). It matures in one year, i.e. T = 1. The option knocks out, if the FX rate:1 is greater than an upper level U in the period between between 1 month’s time and 6 month’s time; or,2 is less than a lower level L in the period between 8th month and 11th month; or,3 lies outside the interval [1.3, 1.8] in the final month up to the end of year.If it has not been knocked out at the end of year, the owner has the option to buy 1 unit of foreign for X units of domestic, say X = 1.4, then, the payoff is max{0, ST − X }.We assume that, FX rate follows a geometric Brownian motion dSt = μSt dt + σSt dWt , (20) where under risk-neutrality μ = r − rf = 0.03 and σ = 0.12.To simulate path, we divide the time period [0, T ] into N small intervals of length ∆t = T /N, and discretize the SDE above by Euler approximation St +∆t − St = μSt ∆t + σSt √∆tZt , Zt ∼ N (0, 1). (21) The algorithm for pricing this barrier option by Monte Carlo simulation is as described as follows:1 Initialize S0;2 Take Si∆t as known, calculate S(i+1)∆t using equation the discretized SDE as above;3 If Si+1 hits any barrier, then set payoff to be 0 and stop iteration, otherwise, set payoff at time T to max{0, ST − X };4 Repeat the above steps for M times and get M payoffs;5 Calculate the average of M payoffs and discount at rate μ;6 Calculate the standard deviation of M payoffs.

最新推荐

recommend-type

教师节主题班会.pptx

教师节主题班会.pptx
recommend-type

学生网络安全教育主题班会.pptx

学生网络安全教育主题班会.pptx
recommend-type

世界环境日主题班会.pptx

世界环境日主题班会.pptx
recommend-type

GNSS 经纬度 所有国家的电子围栏

GNSS 经纬度 所有国家的电子围栏 里面包含了python的转换脚本 countries.wtk 就是转换出的围栏信息 具体的使用参见: https://blog.csdn.net/weixin_44209111/article/details/144034263?sharetype=blogdetail&sharerId=144034263&sharerefer=PC&sharesource=weixin_44209111&spm=1011.2480.3001.8118
recommend-type

JEEWEB Mybatis版本是一款基于SpringMVC+Spring+Mybatis+Mybatis Plus的JAVA WEB敏捷开发系统.zip

JEEWEB Mybatis版本是一款基于SpringMVC+Spring+Mybatis+Mybatis Plus的JAVA WEB敏捷开发系统.zip
recommend-type

正整数数组验证库:确保值符合正整数规则

资源摘要信息:"validate.io-positive-integer-array是一个JavaScript库,用于验证一个值是否为正整数数组。该库可以通过npm包管理器进行安装,并且提供了在浏览器中使用的方案。" 该知识点主要涉及到以下几个方面: 1. JavaScript库的使用:validate.io-positive-integer-array是一个专门用于验证数据的JavaScript库,这是JavaScript编程中常见的应用场景。在JavaScript中,库是一个封装好的功能集合,可以很方便地在项目中使用。通过使用这些库,开发者可以节省大量的时间,不必从头开始编写相同的代码。 2. npm包管理器:npm是Node.js的包管理器,用于安装和管理项目依赖。validate.io-positive-integer-array可以通过npm命令"npm install validate.io-positive-integer-array"进行安装,非常方便快捷。这是现代JavaScript开发的重要工具,可以帮助开发者管理和维护项目中的依赖。 3. 浏览器端的使用:validate.io-positive-integer-array提供了在浏览器端使用的方案,这意味着开发者可以在前端项目中直接使用这个库。这使得在浏览器端进行数据验证变得更加方便。 4. 验证正整数数组:validate.io-positive-integer-array的主要功能是验证一个值是否为正整数数组。这是一个在数据处理中常见的需求,特别是在表单验证和数据清洗过程中。通过这个库,开发者可以轻松地进行这类验证,提高数据处理的效率和准确性。 5. 使用方法:validate.io-positive-integer-array提供了简单的使用方法。开发者只需要引入库,然后调用isValid函数并传入需要验证的值即可。返回的结果是一个布尔值,表示输入的值是否为正整数数组。这种简单的API设计使得库的使用变得非常容易上手。 6. 特殊情况处理:validate.io-positive-integer-array还考虑了特殊情况的处理,例如空数组。对于空数组,库会返回false,这帮助开发者避免在数据处理过程中出现错误。 总结来说,validate.io-positive-integer-array是一个功能实用、使用方便的JavaScript库,可以大大简化在JavaScript项目中进行正整数数组验证的工作。通过学习和使用这个库,开发者可以更加高效和准确地处理数据验证问题。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【损失函数与随机梯度下降】:探索学习率对损失函数的影响,实现高效模型训练

![【损失函数与随机梯度下降】:探索学习率对损失函数的影响,实现高效模型训练](https://img-blog.csdnimg.cn/20210619170251934.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3FxXzQzNjc4MDA1,size_16,color_FFFFFF,t_70) # 1. 损失函数与随机梯度下降基础 在机器学习中,损失函数和随机梯度下降(SGD)是核心概念,它们共同决定着模型的训练过程和效果。本
recommend-type

在ADS软件中,如何选择并优化低噪声放大器的直流工作点以实现最佳性能?

在使用ADS软件进行低噪声放大器设计时,选择和优化直流工作点是至关重要的步骤,它直接关系到放大器的稳定性和性能指标。为了帮助你更有效地进行这一过程,推荐参考《ADS软件设计低噪声放大器:直流工作点选择与仿真技巧》,这将为你提供实用的设计技巧和优化方法。 参考资源链接:[ADS软件设计低噪声放大器:直流工作点选择与仿真技巧](https://wenku.csdn.net/doc/9867xzg0gw?spm=1055.2569.3001.10343) 直流工作点的选择应基于晶体管的直流特性,如I-V曲线,确保工作点处于晶体管的最佳线性区域内。在ADS中,你首先需要建立一个包含晶体管和偏置网络
recommend-type

系统移植工具集:镜像、工具链及其他必备软件包

资源摘要信息:"系统移植文件包通常包含了操作系统的核心映像、编译和开发所需的工具链以及其他辅助工具,这些组件共同作用,使得开发者能够在新的硬件平台上部署和运行操作系统。" 系统移植文件包是软件开发和嵌入式系统设计中的一个重要概念。在进行系统移植时,开发者需要将操作系统从一个硬件平台转移到另一个硬件平台。这个过程不仅需要操作系统的系统镜像,还需要一系列工具来辅助整个移植过程。下面将详细说明标题和描述中提到的知识点。 **系统镜像** 系统镜像是操作系统的核心部分,它包含了操作系统启动、运行所需的所有必要文件和配置。在系统移植的语境中,系统镜像通常是指操作系统安装在特定硬件平台上的完整副本。例如,Linux系统镜像通常包含了内核(kernel)、系统库、应用程序、配置文件等。当进行系统移植时,开发者需要获取到适合目标硬件平台的系统镜像。 **工具链** 工具链是系统移植中的关键部分,它包括了一系列用于编译、链接和构建代码的工具。通常,工具链包括编译器(如GCC)、链接器、库文件和调试器等。在移植过程中,开发者使用工具链将源代码编译成适合新硬件平台的机器代码。例如,如果原平台使用ARM架构,而目标平台使用x86架构,则需要重新编译源代码,生成可以在x86平台上运行的二进制文件。 **其他工具** 除了系统镜像和工具链,系统移植文件包还可能包括其他辅助工具。这些工具可能包括: - 启动加载程序(Bootloader):负责初始化硬件设备,加载操作系统。 - 驱动程序:使得操作系统能够识别和管理硬件资源,如硬盘、显卡、网络适配器等。 - 配置工具:用于配置操作系统在新硬件上的运行参数。 - 系统测试工具:用于检测和验证移植后的操作系统是否能够正常运行。 **文件包** 文件包通常是指所有这些组件打包在一起的集合。这些文件可能以压缩包的形式存在,方便下载、存储和传输。文件包的名称列表中可能包含如下内容: - 操作系统特定版本的镜像文件。 - 工具链相关的可执行程序、库文件和配置文件。 - 启动加载程序的二进制代码。 - 驱动程序包。 - 配置和部署脚本。 - 文档说明,包括移植指南、版本说明和API文档等。 在进行系统移植时,开发者首先需要下载对应的文件包,解压后按照文档中的指导进行操作。在整个过程中,开发者需要具备一定的硬件知识和软件开发经验,以确保操作系统能够在新的硬件上正确安装和运行。 总结来说,系统移植文件包是将操作系统和相关工具打包在一起,以便于开发者能够在新硬件平台上进行系统部署。了解和掌握这些组件的使用方法和作用是进行系统移植工作的重要基础。