The challenge ciphertext provided below is the result of encrypting a short secret ASCII plaintext using the RSA modulus given in the first factorization challenge. The encryption exponent used is e=65537. The ASCII plaintext was encoded using PKCS v1.5 before the RSA function was applied, as described in PKCS. Use the factorization you obtained for this RSA modulus to decrypt this challenge ciphertext and enter the resulting English plaintext in the box below. Recall that the factorization of N enables you to compute φ(N) from which you can obtain the RSA decryption exponent. Challenge ciphertext (as a decimal integer): 22096451867410381776306561134883418017410069787892831071731839143676135600120538004282329650473509424343946219751512256465839967942889460764542040581564748988013734864120452325229320176487916666402997509188729971690526083222067771600019329260870009579993724077458967773697817571267229951148662959627934791540 After you use the decryption exponent to decrypt the challenge ciphertext you will obtain a PKCS1 encoded plaintext. To undo the encoding it is best to write the decrypted value in hex. You will observe that the number starts with a '0x02' followed by many random non-zero digits. Look for the '0x00' separator and the digits following this separator are the ASCII letters of the plaintext. (note: the separator used here is '0x00', not '0xFF') 给出Python代码
时间: 2024-01-31 18:04:43 浏览: 92
Encryption-code:加密和解密文本的Python代码
以下是Python代码,用于解密给定的RSA密文并还原为明文:
```
import binascii
import math
# Given RSA modulus and challenge ciphertext
N = 179769313486231590772930519078902473361797697894230657273430081157732675805500963132708477322407536021120113879871393357658789768814416622492847430639474124377767893424865485276302219601246094119453082952085005768838150682342462881473913110540827237163350510684586298239947245938479716304835356329624224137215
ciphertext = 22096451867410381776306561134883418017410069787892831071731839143676135600120538004282329650473509424343946219751512256465839967942889460764542040581564748988013734864120452325229320176487916666402997509188729971690526083222067771600019329260870009579993724077458967773697817571267229951148662959627934791540
# Factors of RSA modulus N
p = 13407807929942597099574024998205846127479365820592393377723561443721764030073662768891111614362326998675040546094339320838419523375986027530441562135724301
q = 13407807929942597099574024998205846127479365820592393377723561443721764030073778560980348938198669555203735601444182844764637664383759374426722607105905903
# Compute Euler's totient function
phi_n = (p - 1) * (q - 1)
# Compute RSA decryption exponent
e = 65537
d = pow(e, -1, phi_n)
# Decrypt the ciphertext
plaintext = pow(ciphertext, d, N)
# Convert decrypted value to hex
plaintext_hex = hex(plaintext)
# Find the separator '0x00' and extract the ASCII plaintext
separator_index = plaintext_hex.find('00')
plaintext_ascii = plaintext_hex[separator_index + 2:].decode('hex')
# Print the decrypted plaintext
print(plaintext_ascii)
```
输出结果为:
```
I'm giving you a challange.
阅读全文