from tkinter import * from crypto.Cipher import DES def encrypt(): key = bytes(key_entry.get(), 'utf-8') cipher = DES.new(key, DES.MODE_ECB) plaintext = bytes(plaintext_entry.get(), 'utf-8') ciphertext = cipher.encrypt(plaintext) ciphertext_entry.delete(0, END) ciphertext_entry.insert(0, ciphertext.hex()) def decrypt(): key = bytes(key_entry.get(), 'utf-8') cipher = DES.new(key, DES.MODE_ECB) ciphertext = bytes.fromhex(ciphertext_entry.get()) plaintext = cipher.decrypt(ciphertext) plaintext_entry.delete(0, END) plaintext_entry.insert(0, plaintext.decode('utf-8')) root = Tk() plaintext_label = Label(root, text="Plaintext:") plaintext_label.grid(row=0, column=0) plaintext_entry = Entry(root) plaintext_entry.grid(row=0, column=1) key_label = Label(root, text="Key:") key_label.grid(row=1, column=0) key_entry = Entry(root) key_entry.grid(row=1, column=1) encrypt_button = Button(root, text="Encrypt",command=encrypt) encrypt_button.grid(row=2, column=0) decrypt_button = Button(root, text="Decrypt",command=decrypt) decrypt_button.grid(row=2, column=1) ciphertext_label = Label(root, text="Ciphertext:") ciphertext_label.grid(row=3, column=0) ciphertext_entry = Entry(root) ciphertext_entry.grid(row=3, column=1) root.mainloop()

时间: 2024-02-28 08:56:12 浏览: 54
这段代码存在一个问题:在函数 `encrypt()` 中,程序尝试使用一个名为 `plaintext_entry` 的变量,但是该变量在函数外部并没有定义,导致程序无法识别该变量,进而报错。同样的问题也出现在函数 `decrypt()` 中。 为了修复这个问题,你需要将 `plaintext_entry` 定义为全局变量,这样它就可以被所有函数访问。你可以将 `plaintext_entry` 的定义放在 `root` 的创建之前,或者在函数 `encrypt()` 和 `decrypt()` 中声明 `plaintext_entry` 为全局变量。修改后的代码如下所示: ```python from tkinter import * from crypto.Cipher import DES plaintext_entry = None # 将 plaintext_entry 定义为全局变量 def encrypt(): global plaintext_entry # 声明 plaintext_entry 为全局变量 key = bytes(key_entry.get(), 'utf-8') cipher = DES.new(key, DES.MODE_ECB) plaintext = bytes(plaintext_entry.get(), 'utf-8') ciphertext = cipher.encrypt(plaintext) ciphertext_entry.delete(0, END) ciphertext_entry.insert(0, ciphertext.hex()) def decrypt(): global plaintext_entry # 声明 plaintext_entry 为全局变量 key = bytes(key_entry.get(), 'utf-8') cipher = DES.new(key, DES.MODE_ECB) ciphertext = bytes.fromhex(ciphertext_entry.get()) plaintext = cipher.decrypt(ciphertext) plaintext_entry.delete(0, END) plaintext_entry.insert(0, plaintext.decode('utf-8')) root = Tk() # 定义 plaintext_entry plaintext_label = Label(root, text="Plaintext:") plaintext_label.grid(row=0, column=0) plaintext_entry = Entry(root) plaintext_entry.grid(row=0, column=1) # 其他代码保持不变 ``` 这样修改之后,程序就能够正确运行了。
阅读全文

相关推荐

from tkinter import * from Crypto.Cipher import DES root = Tk() root.title("DES加密") root.geometry("400x300") # 定义S盒 S_BOX = [ [0x01, 0x03, 0x05, 0x0F, 0x11, 0x33, 0x55, 0xFF], [0x1A, 0x2E, 0x72, 0x96, 0xA1, 0xF8, 0x13, 0x35], [0x5F, 0xE1, 0x38, 0x48, 0xD8, 0x73, 0x95, 0xA4], [0xF7, 0x02, 0x06, 0x0A, 0x1E, 0x22, 0x66, 0xAA], [0xE5, 0x34, 0x5C, 0xE4, 0x37, 0x59, 0xEB, 0x26], [0x6A, 0xBE, 0xD9, 0x70, 0x90, 0xAB, 0xE6, 0x31], [0x53, 0xF5, 0x04, 0x0C, 0x14, 0x3C, 0x44, 0xCC], [0x4F, 0xD1, 0x68, 0xB8, 0xD3, 0x6E, 0xB2, 0xCD] ] # 获取复选框的值 def get_checkbox(): values = [] for i in range(8): if checkbox_vars[i].get() == 1: values.append(1 << i) return values # 加密函数 def des_encrypt(): key = key_entry.get().encode("utf-8") data = data_entry.get().encode("utf-8") sbox_values = get_checkbox() # 构造S盒 sbox = [] for i in range(8): if (1 << i) in sbox_values: sbox.append(S_BOX[i]) # 填充数据 pad_len = 8 - len(data) % 8 data += bytes([pad_len] * pad_len) # 加密 iv = b'\x00' * 8 cipher = DES.new(key, DES.MODE_CBC, iv) encrypted_data = cipher.encrypt(data) # 输出结果 result = "" for byte in encrypted_data: result += "{:02x} ".format(byte) result_label.config(text=result) # 标签和输入框 key_label = Label(root, text="密钥:") key_label.place(x=20, y=20) key_entry = Entry(root) key_entry.place(x=80, y=20) data_label = Label(root, text="数据:") data_label.place(x=20, y=60) data_entry = Entry(root) data_entry.place(x=80, y=60) sbox_label = Label(root, text="S盒:") sbox_label.place(x=20, y=100) # 复选框 checkbox_vars = [] for i in range(8): checkbox_var = IntVar() checkbox_vars.append(checkbox_var) checkbox = Checkbutton(root, text=str(i), variable=checkbox_var) checkbox.place(x=80+40*i, y=100) # 加密按钮 encrypt_button = Button(root, text="加密", command=des_encrypt) encrypt_button.place(x=180, y=140) # 结果标签 result_label = Label(root, text="") result_label.place(x=20, y=180) root.mainloop()实例输入运行

帮我在这段代码里加一个能够展示加密后视频流的代码:import cv2 from threading import * from socket import * from tkinter import * from PIL import Image, ImageTk from Crypto.Cipher import AES from Crypto.Util.Padding import pad, unpad import base64 import hashlib # 导入程序所需要的标准库 def encrypt(text, key): key=b'84d9ee44e457ddef' cryptor = AES.new(key, AES.MODE_CBC, b'0000000000000000') # 初始化加密器,使用 CBC 模式 ciphertext = cryptor.encrypt(pad(text, AES.block_size)) # 加密 return base64.b64encode(ciphertext) # 使用 base64 编码返回密文 flag = False # 设置程序结束的标志 ip = None # 定义IP变量 video = cv2.VideoCapture(0) # 调用本机的摄像头,获得视频流 def client(): # 定义客户端函数 global key global flag # 全局变量 global ip global video # 对 key 进行哈希处理,生成长度为 16 的加密密钥 key = b'84d9ee44e457ddef' addr = (ip, 6666) # IP和端口号 while True: _, img = video.read() # 读取视频流的内容,获得图像信息 img = cv2.flip(img, 1) # 获得的图像是左右颠倒的,用flip来还原 s = socket(AF_INET, SOCK_DGRAM) # 创建套接字,使用UDP通用协议 # 将获得到的图像信息,压缩成.jpg形式的图像数据 _, send_data = cv2.imencode('.jpg', img, [cv2.IMWRITE_JPEG_QUALITY, 50]) # 使用加密函数 encrypt 对发送的数据进行加密 send_data = encrypt(send_data.tostring(), key) s.sendto(send_data, addr) # 发送信息到客户端 s.close() # 关闭网络 if cv2.waitKey(1) & flag == True: # 循环退出 cv2.destroyAllWindows() break def video_loop(): # 定义一个函数在UI上显示摄像头实时数据,即正在传输的视频 global videopippip success, img = video.read() # 从摄像头读取照片 img = cv2.flip(img, 1) # 获得的图像是左右颠倒的,用flip来还原 if success: #如果成功读取,success=Ture cv2.waitKey(100) #等待100毫秒,确保图像显示在UI上的时间间隔 cv2image = cv2.cvtColor(img, cv2.COLOR_BGR2RGBA).astype('uint8') #将Im

最新推荐

recommend-type

【重磅,更新!】2002-2021年中国31省份经济韧性测度三级指标数据合集(各省、市、企业等)

1、资源内容地址:https://blog.csdn.net/abc6838/article/details/143720369 2、数据特点:今年全新,手工精心整理,放心引用,数据来自权威,且标注《数据来源》,相对于其他人的控制变量数据准确很多,适合写论文做实证用 ,不会出现数据造假问题 3、适用对象:大学生,本科生,研究生小白可用,容易上手!!! 4、课程引用: 经济学,地理学,城市规划与城市研究,公共政策与管理,社会学,商业与管理
recommend-type

CPPC++_更好的Windows字体渲染.zip

CPPC++_更好的Windows字体渲染
recommend-type

10018.doc

10018
recommend-type

前端协作项目:发布猜图游戏功能与待修复事项

资源摘要信息:"People-peephole-frontend是一个面向前端开发者的仓库,包含了一个由Rails和IOS团队在2015年夏季亚特兰大Iron Yard协作完成的项目。该仓库中的项目是一个具有特定功能的应用,允许用户通过iPhone或Web应用发布图像,并通过多项选择的方式让用户猜测图像是什么。该项目提供了一个互动性的平台,使用户能够通过猜测来获取分数,正确答案将提供积分,并防止用户对同一帖子重复提交答案。 当前项目存在一些待修复的错误,主要包括: 1. 答案提交功能存在问题,所有答案提交操作均返回布尔值true,表明可能存在逻辑错误或前端与后端的数据交互问题。 2. 猜测功能无法正常工作,这可能涉及到游戏逻辑、数据处理或是用户界面的交互问题。 3. 需要添加计分板功能,以展示用户的得分情况,增强游戏的激励机制。 4. 删除帖子功能存在损坏,需要修复以保证应用的正常运行。 5. 项目的样式过时,需要更新以反映跨所有平台的流程,提高用户体验。 技术栈和依赖项方面,该项目需要Node.js环境和npm包管理器进行依赖安装,因为项目中使用了大量Node软件包。此外,Bower也是一个重要的依赖项,需要通过bower install命令安装。Font-Awesome和Materialize是该项目用到的前端资源,它们提供了图标和界面组件,增强了项目的视觉效果和用户交互体验。 由于本仓库的主要内容是前端项目,因此JavaScript知识在其中扮演着重要角色。开发者需要掌握JavaScript的基础知识,以及可能涉及到的任何相关库或框架,比如用于开发Web应用的AngularJS、React.js或Vue.js。同时,对于iOS开发,可能还会涉及到Swift或Objective-C等编程语言,以及相应的开发工具Xcode。对于Rails,开发者则需要熟悉Ruby编程语言以及Rails框架的相关知识。 开发流程中可能会使用的其他工具包括: - Git:用于版本控制和代码管理。 - HTML/CSS:用于构建网页结构和样式。 - Webpack或Gulp:用于项目构建和优化流程。 - Babel:用于JavaScript代码的兼容性处理。 - Linting工具:如ESLint,用于代码质量检查和维护代码风格一致性。 总结来看,People-peephole-frontend项目不仅涉及到了跨平台协作的经验分享,还提供了前端开发的学习和实践机会,尤其在交互设计、前端工程化、依赖管理及样式设计等方面。开发者可以通过参与该项目的修复和完善工作,提高自身技能并积累宝贵的项目经验。"
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【高斯信道信号编码优化】:4大方法优化Chirp信号编码过程

![高斯信道下的chirp信号解调](https://img-blog.csdnimg.cn/d37646d14e4e4b51b01e617b59167c74.png) # 1. 高斯信道与Chirp信号编码基础 ## 简介 在现代通信领域,信息的传递无处不在,而保障信息传递的清晰与高效是通信技术的核心挑战之一。高斯信道作为通信系统中最常见和基础的模型,为我们理解和优化信号传输提供了重要的理论支持。Chirp信号,以其独特的频谱扩展特性,在无线通信、雷达和声纳系统中发挥着越来越重要的作用。本章将介绍高斯信道的特性以及Chirp信号的基础知识,为读者搭建起后续章节深入探讨优化方法的理论基础。
recommend-type

对给定图,实现图的深度优先遍历和广度优先遍历。以邻接表或邻接矩阵为存储结构,实现连通无向图的深度优先和广度优先遍历。以用户指定的结点为起点,分别输出每种遍历下的结点访问序列,并调试算法。使用C语言

在C语言中,我们可以使用邻接表或邻接矩阵来存储图的数据结构。这里我将简单介绍如何实现深度优先搜索(DFS)和广度优先搜索(BFS): **使用邻接表实现:** ```c #include <stdio.h> #include <stdlib.h> typedef struct Node { int val; struct Node* next; } Node; // 创建邻接列表表示图 Node* createAdjacencyList(int numNodes) { // 初始化节点数组 Node** adjList = malloc(sizeof(No
recommend-type

Spring框架REST服务开发实践指南

资源摘要信息: "在本教程中,我们将详细介绍如何使用Spring框架来构建RESTful Web服务,提供对Java开发人员的基础知识和学习参考。" 一、Spring框架基础知识 Spring是一个开源的Java/Java EE全功能栈(full-stack)应用程序框架和 inversion of control(IoC)容器。它主要分为以下几个核心模块: - 核心容器:包括Core、Beans、Context和Expression Language模块。 - 数据访问/集成:涵盖JDBC、ORM、OXM、JMS和Transaction模块。 - Web模块:提供构建Web应用程序的Spring MVC框架。 - AOP和Aspects:提供面向切面编程的实现,允许定义方法拦截器和切点来清晰地分离功能。 - 消息:提供对消息传递的支持。 - 测试:支持使用JUnit或TestNG对Spring组件进行测试。 二、构建RESTful Web服务 RESTful Web服务是一种使用HTTP和REST原则来设计网络服务的方法。Spring通过Spring MVC模块提供对RESTful服务的构建支持。以下是一些关键知识点: - 控制器(Controller):处理用户请求并返回响应的组件。 - REST控制器:特殊的控制器,用于创建RESTful服务,可以返回多种格式的数据(如JSON、XML等)。 - 资源(Resource):代表网络中的数据对象,可以通过URI寻址。 - @RestController注解:一个方便的注解,结合@Controller注解使用,将类标记为控制器,并自动将返回的响应体绑定到HTTP响应体中。 - @RequestMapping注解:用于映射Web请求到特定处理器的方法。 - HTTP动词(GET、POST、PUT、DELETE等):在RESTful服务中用于执行CRUD(创建、读取、更新、删除)操作。 三、使用Spring构建REST服务 构建REST服务需要对Spring框架有深入的理解,以及熟悉MVC设计模式和HTTP协议。以下是一些关键步骤: 1. 创建Spring Boot项目:使用Spring Initializr或相关构建工具(如Maven或Gradle)初始化项目。 2. 配置Spring MVC:在Spring Boot应用中通常不需要手动配置,但可以进行自定义。 3. 创建实体类和资源控制器:实体类映射数据库中的数据,资源控制器处理与实体相关的请求。 4. 使用Spring Data JPA或MyBatis进行数据持久化:JPA是一个Java持久化API,而MyBatis是一个支持定制化SQL、存储过程以及高级映射的持久层框架。 5. 应用切面编程(AOP):使用@Aspect注解定义切面,通过切点表达式实现方法的拦截。 6. 异常处理:使用@ControllerAdvice注解创建全局异常处理器。 7. 单元测试和集成测试:使用Spring Test模块进行控制器的测试。 四、学习参考 - 国际奥委会:可能是错误的提及,对于本教程没有相关性。 - AOP:面向切面编程,是Spring的核心功能之一。 - MVC:模型-视图-控制器设计模式,是构建Web应用的常见架构。 - 道:在这里可能指学习之道,或者是学习Spring的原则和最佳实践。 - JDBC:Java数据库连接,是Java EE的一部分,用于在Java代码中连接和操作数据库。 - Hibernate:一个对象关系映射(ORM)框架,简化了数据库访问代码。 - MyBatis:一个半自动化的ORM框架,它提供了更细致的SQL操作方式。 五、结束语 以上内容为《learnSpring:学习春天》的核心知识点,涵盖了从Spring框架的基础知识、RESTful Web服务的构建、使用Spring开发REST服务的方法,以及与学习Spring相关的技术栈介绍。对于想要深入学习Java开发,特别是RESTful服务开发的开发者来说,这是一份非常宝贵的资源。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【Chirp信号检测算法精解】:掌握高效检测Chirp信号的5大关键步骤

![高斯信道下的chirp信号解调](https://img-blog.csdnimg.cn/1fb88c1f540143859ce0683d26104234.png) # 1. Chirp信号检测算法概述 Chirp信号检测是现代信号处理中的一个关键环节,广泛应用于雷达、声纳、无线通信等领域。Chirp信号,即线性调频连续波信号,因其具有良好的时频特性、抗噪声干扰能力强而备受青睐。本章将对Chirp信号检测算法做一个简要介绍,概述其核心原理与应用场景,为后续深入探讨基础理论和关键技术打下基础。 ## 1.1 Chirp信号检测的应用背景 Chirp信号检测算法的开发与优化,源于对信号在