unet加残差网络代码
时间: 2023-10-15 19:02:05 浏览: 104
以下是使用PyTorch实现的Unet加残差网络的代码示例:
```python
import torch
import torch.nn as nn
class ResBlock(nn.Module):
def __init__(self, in_channels, out_channels):
super(ResBlock, self).__init__()
self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1)
self.bn1 = nn.BatchNorm2d(out_channels)
self.relu = nn.ReLU(inplace=True)
self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1)
self.bn2 = nn.BatchNorm2d(out_channels)
self.downsample = None
if in_channels != out_channels:
self.downsample = nn.Sequential(
nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1),
nn.BatchNorm2d(out_channels)
)
def forward(self, x):
identity = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
if self.downsample is not None:
identity = self.downsample(x)
out += identity
out = self.relu(out)
return out
class UnetResNet(nn.Module):
def __init__(self, in_channels, out_channels):
super(UnetResNet, self).__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.conv1 = nn.Conv2d(in_channels, 64, kernel_size=3, padding=1)
self.bn1 = nn.BatchNorm2d(64)
self.relu = nn.ReLU(inplace=True)
self.res_block1 = ResBlock(64, 64)
self.res_block2 = ResBlock(64, 128)
self.res_block3 = ResBlock(128, 256)
self.res_block4 = ResBlock(256, 512)
self.maxpool = nn.MaxPool2d(kernel_size=2, stride=2)
self.upconv1 = nn.ConvTranspose2d(512, 256, kernel_size=2, stride=2)
self.conv2 = nn.Conv2d(512, 256, kernel_size=3, padding=1)
self.bn2 = nn.BatchNorm2d(256)
self.upconv2 = nn.ConvTranspose2d(256, 128, kernel_size=2, stride=2)
self.conv3 = nn.Conv2d(256, 128, kernel_size=3, padding=1)
self.bn3 = nn.BatchNorm2d(128)
self.upconv3 = nn.ConvTranspose2d(128, 64, kernel_size=2, stride=2)
self.conv4 = nn.Conv2d(128, 64, kernel_size=3, padding=1)
self.bn4 = nn.BatchNorm2d(64)
self.conv5 = nn.Conv2d(64, out_channels, kernel_size=1)
def forward(self, x):
x1 = self.conv1(x)
x1 = self.bn1(x1)
x1 = self.relu(x1)
x2 = self.res_block1(x1)
x2 = self.maxpool(x2)
x3 = self.res_block2(x2)
x3 = self.maxpool(x3)
x4 = self.res_block3(x3)
x4 = self.maxpool(x4)
x5 = self.res_block4(x4)
x6 = self.upconv1(x5)
x6 = torch.cat([x6, x4], dim=1)
x6 = self.conv2(x6)
x6 = self.bn2(x6)
x6 = self.relu(x6)
x7 = self.upconv2(x6)
x7 = torch.cat([x7, x3], dim=1)
x7 = self.conv3(x7)
x7 = self.bn3(x7)
x7 = self.relu(x7)
x8 = self.upconv3(x7)
x8 = torch.cat([x8, x2], dim=1)
x8 = self.conv4(x8)
x8 = self.bn4(x8)
x8 = self.relu(x8)
x9 = self.conv5(x8)
return x9
```
以上代码实现了一个带有残差块的Unet模型,可以通过调整网络层数、卷积核大小等参数进行修改。
阅读全文