举例实现哈夫曼编码与译码
时间: 2024-03-31 15:28:19 浏览: 83
哈夫曼编码是一种可变长度编码,它通过将出现频率较高的字符用较短的编码表示,从而实现对文本的高效压缩。下面是Java实现哈夫曼编码与译码的示例代码:
```
import java.util.PriorityQueue;
import java.util.Scanner;
class HuffmanNode implements Comparable<HuffmanNode> {
int frequency;
char data;
HuffmanNode left, right;
public HuffmanNode(int frequency, char data) {
this.frequency = frequency;
this.data = data;
left = right = null;
}
public int compareTo(HuffmanNode node) {
return frequency - node.frequency;
}
}
public class HuffmanCoding {
public static void main(String[] args) {
Scanner scanner = new Scanner(System.in);
System.out.print("Enter the input string: ");
String input = scanner.nextLine();
int[] frequency = new int[256];
for (int i = 0; i < input.length(); i++) {
frequency[input.charAt(i)]++;
}
PriorityQueue<HuffmanNode> queue = new PriorityQueue<>();
for (int i = 0; i < 256; i++) {
if (frequency[i] > 0) {
queue.add(new HuffmanNode(frequency[i], (char) i));
}
}
while (queue.size() > 1) {
HuffmanNode left = queue.poll();
HuffmanNode right = queue.poll();
HuffmanNode parent = new HuffmanNode(left.frequency + right.frequency, '-');
parent.left = left;
parent.right = right;
queue.add(parent);
}
HuffmanNode root = queue.poll();
String[] codes = new String[256];
generateCodes(root, "", codes);
System.out.println("Huffman Codes:");
for (int i = 0; i < 256; i++) {
if (codes[i] != null) {
System.out.println((char) i + ": " + codes[i]);
}
}
String encoded = encode(input, codes);
System.out.println("Encoded string: " + encoded);
String decoded = decode(encoded, root);
System.out.println("Decoded string: " + decoded);
}
public static void generateCodes(HuffmanNode node, String code, String[] codes) {
if (node == null) {
return;
}
if (node.left == null && node.right == null) {
codes[node.data] = code;
}
generateCodes(node.left, code + "0", codes);
generateCodes(node.right, code + "1", codes);
}
public static String encode(String input, String[] codes) {
StringBuilder builder = new StringBuilder();
for (int i = 0; i < input.length(); i++) {
builder.append(codes[input.charAt(i)]);
}
return builder.toString();
}
public static String decode(String input, HuffmanNode root) {
StringBuilder builder = new StringBuilder();
HuffmanNode current = root;
for (int i = 0; i < input.length(); i++) {
if (input.charAt(i) == '0') {
current = current.left;
} else {
current = current.right;
}
if (current.left == null && current.right == null) {
builder.append(current.data);
current = root;
}
}
return builder.toString();
}
}
```
在这个示例代码中,我们首先输入一个字符串,然后计算每个字符出现的频率。接着,我们使用优先队列来构建哈夫曼树。在构建哈夫曼树的过程中,我们将出现频率较小的节点作为左子树,出现频率较大的节点作为右子树,然后将它们的父节点的频率设置为它们的和。最后,我们使用递归的方式生成每个字符的哈夫曼编码,并将编码存储在一个字符串数组中。接着,我们使用生成的哈夫曼编码对输入字符串进行编码,并输出编码后的字符串。最后,我们使用哈夫曼树对编码后的字符串进行解码,并输出解码后的字符串。
阅读全文