h_fc1 = tf.nn.relu(tf.matmul([-1, 7 * 7 * 64], [7 * 7 * 64, 1024]) + [1024]),如何理解这句代码?
时间: 2023-06-05 13:05:39 浏览: 208
这段代码是一段 TensorFlow 的神经网络代码,其中 h_fc1 代表一层全连接层的输出。tf.matmul 是 TensorFlow 中的两个张量矩阵相乘的函数,[-1, 7 * 7 * 64] 是输入的张量形状,表示有一个维度未知,另外两个维度为 7 * 7 * 64。[7 * 7 * 64, 1024] 是权重矩阵的形状,用来将输入张量的每个元素都与权重相乘,并将结果相加。最终输出的形状为 [1024],即具有 1024 个元素的一维向量。tf.nn.relu 则是激活函数,将输出向量的每个元素都替换为 max(0, 元素值),即去除负数部分,将正数部分进行保留。
相关问题
class ChannelAttention(nn.Module): def __init__(self, in_planes, ratio = 4): super(ChannelAttention, self).__init__() self.avg_pool = nn.AdaptiveAvgPool2d(1) self.max_pool = nn.AdaptiveMaxPool2d(1) self.fc1 = nn.Conv2d(in_planes, in_planes // ratio, 1, bias=False) self.relu1 = nn.ReLU() self.fc2 = nn.Conv2d(in_planes // ratio, in_planes, 1, bias=False) self.sigmoid = nn.Sigmoid() def forward(self, x): avg_out = self.fc2(self.relu1(self.fc1(self.avg_pool(x)))) max_out = self.fc2(self.relu1(self.fc1(self.max_pool(x)))) out = avg_out + max_out return self.sigmoid(out) 改为tensorflow形式
在 TensorFlow 中,可以使用以下代码来实现相同的通道注意力模块:
```python
import tensorflow as tf
class ChannelAttention(tf.keras.layers.Layer):
def __init__(self, in_planes, ratio=4):
super(ChannelAttention, self).__init__()
self.avg_pool = tf.keras.layers.GlobalAvgPool2D()
self.max_pool = tf.keras.layers.GlobalMaxPool2D()
self.fc1 = tf.keras.layers.Conv2D(in_planes // ratio, kernel_size=1, strides=1, use_bias=False)
self.relu1 = tf.keras.layers.ReLU()
self.fc2 = tf.keras.layers.Conv2D(in_planes, kernel_size=1, strides=1, use_bias=False)
self.sigmoid = tf.keras.layers.Activation('sigmoid')
def call(self, x):
avg_out = self.fc2(self.relu1(self.fc1(self.avg_pool(x))))
max_out = self.fc2(self.relu1(self.fc1(self.max_pool(x))))
out = avg_out + max_out
return self.sigmoid(out)
```
在 TensorFlow 中,我们使用 `tf.keras.layers` 模块来定义网络层,使用 `call()` 方法来实现前向传播。这里的 `GlobalAvgPool2D` 和 `GlobalMaxPool2D` 分别代替了 PyTorch 中的 `AdaptiveAvgPool2d` 和 `AdaptiveMaxPool2d`,它们也可以用来对不同尺寸的输入进行平均池化和最大池化。另外,TensorFlow 中没有 `nn.ReLU` 模块,我们需要使用 `tf.keras.layers.ReLU()` 来替代。其他的代码实现和 PyTorch 版本相同。
用tensorflow的layers.Layer模块改写 class ChannelAttention(nn.Module): def __init__(self, in_planes, ratio = 4): super(ChannelAttention, self).__init__() self.avg_pool = nn.AdaptiveAvgPool2d(1) self.max_pool = nn.AdaptiveMaxPool2d(1) self.fc1 = nn.Conv2d(in_planes, in_planes // ratio, 1, bias=False) self.relu1 = nn.ReLU() self.fc2 = nn.Conv2d(in_planes // ratio, in_planes, 1, bias=False) self.sigmoid = nn.Sigmoid() def forward(self, x): avg_out = self.fc2(self.relu1(self.fc1(self.avg_pool(x)))) max_out = self.fc2(self.relu1(self.fc1(self.max_pool(x)))) out = avg_out + max_out return self.sigmoid(out)
以下是使用tensorflow的layers.Layer模块改写的代码:
```
import tensorflow as tf
class ChannelAttention(tf.keras.layers.Layer):
def __init__(self, in_planes, ratio=4):
super(ChannelAttention, self).__init__()
self.avg_pool = tf.keras.layers.GlobalAveragePooling2D()
self.max_pool = tf.keras.layers.GlobalMaxPooling2D()
self.fc1 = tf.keras.layers.Conv2D(filters=in_planes // ratio, kernel_size=1, strides=1, padding='same')
self.relu1 = tf.keras.layers.ReLU()
self.fc2 = tf.keras.layers.Conv2D(filters=in_planes, kernel_size=1, strides=1, padding='same')
self.sigmoid = tf.keras.layers.Activation('sigmoid')
def call(self, x):
avg_out = self.fc2(self.relu1(self.fc1(self.avg_pool(x))))
max_out = self.fc2(self.relu1(self.fc1(self.max_pool(x))))
out = tf.add(avg_out, max_out)
return self.sigmoid(out)
```
同样需要注意的是,tensorflow中没有nn.Module这个概念,而是使用tf.keras.layers.Layer作为基类。在类定义中加入`tf.keras.layers.Layer`,并对一些函数名称进行修改。另外,由于在`ChannelAttention`类中使用了`GlobalAveragePooling2D`和`GlobalMaxPooling2D`函数,因此需要保证tensorflow的版本在2.0以上。在`ChannelAttention`的`__init__`函数中,使用了`GlobalAveragePooling2D`和`GlobalMaxPooling2D`函数分别对输入数据进行global average pooling和global max pooling操作,然后使用`Conv2D`函数构建全连接层,并使用ReLU激活函数进行非线性变换,最后再构建一个全连接层,并使用sigmoid函数进行归一化。在`ChannelAttention`的`call`函数中,使用了`add`函数对两个分支的输出进行相加。
阅读全文