旅行商问题分支限界法的代码以及时间复杂度分析
时间: 2023-12-22 20:19:11 浏览: 389
以下是旅行商问题分支限界法的 Python 代码:
```python
import heapq
def tsp(graph, start):
n = len(graph)
priorityQueue = [(0, start, [start])]
minCost = float("inf")
while priorityQueue:
(cost, node, path) = heapq.heappop(priorityQueue)
if len(path) == n:
minCost = min(minCost, cost + graph[node][start])
for nextNode in range(n):
if nextNode not in path:
nextPath = path + [nextNode]
nextCost = cost + graph[node][nextNode]
lowerBound = nextCost + min(graph[nextNode][i] for i in range(n) if i not in nextPath)
if lowerBound < minCost:
heapq.heappush(priorityQueue, (nextCost, nextNode, nextPath))
return minCost
graph = [[0, 10, 15, 20], [10, 0, 35, 25], [15, 35, 0, 30], [20, 25, 30, 0]]
start = 0
print(tsp(graph, start))
```
时间复杂度分析:
在最坏情况下,我们需要遍历所有可能的路径,即 $n!$ 种路径,因此时间复杂度为 $O(n! \times n^2 \log n)$。实际上,由于分支限界法可以剪枝,因此实际运行时间通常比最坏情况下要好得多。
阅读全文
相关推荐
![pdf](https://img-home.csdnimg.cn/images/20241231044930.png)
![doc](https://img-home.csdnimg.cn/images/20241231044833.png)
![rar](https://img-home.csdnimg.cn/images/20241231044955.png)
![docx](https://img-home.csdnimg.cn/images/20241231044901.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![pdf](https://img-home.csdnimg.cn/images/20241231044930.png)
![-](https://img-home.csdnimg.cn/images/20241231044901.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)