自定义一个不经过额外的线性层的ResNet50网络,输出维度为512,给出pytorch代码和详细注释
时间: 2024-02-13 13:05:51 浏览: 76
Pytorch: 自定义网络层实例
好的,以下是一个自定义的不经过额外线性层的ResNet50网络的PyTorch代码和详细注释:
```python
import torch.nn as nn
# 定义BasicBlock模块
class BasicBlock(nn.Module):
expansion = 1
def __init__(self, in_planes, planes, stride=1):
super(BasicBlock, self).__init__()
# 第一个卷积层
self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(planes)
# 第二个卷积层
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(planes)
# 残差连接
self.shortcut = nn.Sequential()
if stride != 1 or in_planes != self.expansion*planes:
self.shortcut = nn.Sequential(
nn.Conv2d(in_planes, self.expansion*planes, kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(self.expansion*planes)
)
# 前向传播
def forward(self, x):
out = nn.ReLU()(self.bn1(self.conv1(x))) # 第一个卷积层
out = self.bn2(self.conv2(out)) # 第二个卷积层
out += self.shortcut(x) # 残差连接
out = nn.ReLU()(out) # 激活函数
return out
# 定义ResNet模块
class ResNet(nn.Module):
def __init__(self, block, num_blocks):
super(ResNet, self).__init__()
# ResNet第一层卷积层
self.in_planes = 64
self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(64)
# ResNet四个层
self.layer1 = self._make_layer(block, 64, num_blocks[0], stride=1)
self.layer2 = self._make_layer(block, 128, num_blocks[1], stride=2)
self.layer3 = self._make_layer(block, 256, num_blocks[2], stride=2)
self.layer4 = self._make_layer(block, 512, num_blocks[3], stride=2)
# 全局平均池化层
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
# 构建ResNet中的一个层
def _make_layer(self, block, planes, num_blocks, stride):
strides = [stride] + [1]*(num_blocks-1) # 每个模块的第一个BasicBlock的步幅为stride,其余为1
layers = []
for stride in strides:
layers.append(block(self.in_planes, planes, stride)) # 添加BasicBlock模块
self.in_planes = planes * block.expansion # 更新输入通道数
return nn.Sequential(*layers)
# 前向传播
def forward(self, x):
out = nn.ReLU()(self.bn1(self.conv1(x))) # ResNet第一层卷积层
out = self.layer1(out) # ResNet第二层
out = self.layer2(out) # ResNet第三层
out = self.layer3(out) # ResNet第四层
out = self.layer4(out) # ResNet第五层
out = self.avgpool(out) # 全局平均池化层
out = out.view(out.size(0), -1) # 将输出展平
return out
# 定义ResNet50模型
def ResNet50():
return ResNet(BasicBlock, [3, 4, 6, 3])
```
注意,这个网络只包含了ResNet的特征提取部分,没有额外的线性层。如果你需要在这个网络后面加上额外的线性层,你可以将其输出维度改为512,并在其后面加上一个nn.Linear层。
阅读全文