以联邦学习为基础,训练多个联邦学习分类器代码
时间: 2023-11-24 12:05:16 浏览: 80
分类器训练
好的,以下是一个使用联邦学习训练多个分类器的代码示例:
```python
import torch
from torchvision import datasets, transforms
from torch.utils.data import DataLoader
from torch import nn, optim
# 定义模型结构
class Model(nn.Module):
def __init__(self):
super().__init__()
self.fc1 = nn.Linear(784, 256)
self.fc2 = nn.Linear(256, 128)
self.fc3 = nn.Linear(128, 10)
self.dropout = nn.Dropout(p=0.2)
self.relu = nn.ReLU()
def forward(self, x):
x = x.view(x.shape[0], -1)
x = self.dropout(self.relu(self.fc1(x)))
x = self.dropout(self.relu(self.fc2(x)))
x = self.fc3(x)
return x
# 定义联邦学习服务器
class FederatedServer:
def __init__(self, num_clients, train_data, test_data, lr=0.01, batch_size=64, epochs=10):
self.num_clients = num_clients
self.train_data = train_data
self.test_data = test_data
self.lr = lr
self.batch_size = batch_size
self.epochs = epochs
self.clients = []
self.server_model = Model()
self.criterion = nn.CrossEntropyLoss()
self.optimizer = optim.SGD(self.server_model.parameters(), lr=self.lr)
# 初始化客户端
for i in range(num_clients):
data_loader = DataLoader(train_data[i], batch_size=self.batch_size, shuffle=True)
client_model = Model()
client_optimizer = optim.SGD(client_model.parameters(), lr=self.lr)
self.clients.append({'data_loader': data_loader, 'model': client_model, 'optimizer': client_optimizer})
# 训练客户端模型
def train_client_model(self, client):
client['model'].train()
for epoch in range(self.epochs):
for images, labels in client['data_loader']:
client['optimizer'].zero_grad()
output = client['model'](images)
loss = self.criterion(output, labels)
loss.backward()
client['optimizer'].step()
# 聚合客户端模型
def aggregate_client_models(self):
for param in self.server_model.parameters():
param.data = torch.zeros_like(param.data)
for client in self.clients:
for param, client_param in zip(self.server_model.parameters(), client['model'].parameters()):
param.data += client_param.data / self.num_clients
# 在测试集上评估模型
def evaluate_model(self):
self.server_model.eval()
test_loss = 0
test_accuracy = 0
with torch.no_grad():
for images, labels in self.test_data:
output = self.server_model(images)
test_loss += self.criterion(output, labels)
ps = torch.exp(output)
top_p, top_class = ps.topk(1, dim=1)
equals = top_class == labels.view(*top_class.shape)
test_accuracy += torch.mean(equals.type(torch.FloatTensor))
return test_loss / len(self.test_data), test_accuracy / len(self.test_data)
# 训练联邦模型
def train(self):
for epoch in range(self.epochs):
for client in self.clients:
self.train_client_model(client)
self.aggregate_client_models()
test_loss, test_accuracy = self.evaluate_model()
print(f"Epoch {epoch+1}/{self.epochs}, Test Loss: {test_loss:.3f}, Test Accuracy: {test_accuracy:.3f}")
```
这段代码实现了一个简单的联邦学习服务器,其中模型结构为一个三层全连接神经网络,使用 SGD 优化器和交叉熵损失函数。在服务器初始化时,会创建多个客户端,每个客户端使用不同的数据集进行训练。在训练过程中,服务器会通过聚合客户端模型的方式来更新自己的模型参数,并在测试集上评估模型性能。
阅读全文