class CellTrack_Model(nn.Module): def __init__(self, hand_NodeEncoder_dic={}, learned_NodeEncoder_dic={}, intialize_EdgeEncoder_dic={}, message_passing={}, edge_classifier_dic={} ): super(CellTrack_Model, self).__init__() self.distance = CosineSimilarity() self.handcrafted_node_embedding = MLP(**hand_NodeEncoder_dic) self.learned_node_embedding = MLP(**learned_NodeEncoder_dic) self.learned_edge_embedding = MLP(**intialize_EdgeEncoder_dic) edge_mpnn_class = getattr(edge_mpnn, message_passing.target) self.message_passing = edge_mpnn_class(**message_passing.kwargs) self.edge_classifier = MLP(**edge_classifier_dic) def forward(self, x, edge_index, edge_feat): x1, x2 = x x_init = torch.cat((x1, x2), dim=-1) src, trg = edge_index similarity1 = self.distance(x_init[src], x_init[trg]) abs_init = torch.abs(x_init[src] - x_init[trg]) x1 = self.handcrafted_node_embedding(x1) x2 = self.learned_node_embedding(x2) x = torch.cat((x1, x2), dim=-1) src, trg = edge_index similarity2 = self.distance(x[src], x[trg]) edge_feat_in = torch.cat((abs_init, similarity1[:, None], x[src], x[trg], torch.abs(x[src] - x[trg]), similarity2[:, None]), dim=-1) edge_init_features = self.learned_edge_embedding(edge_feat_in) edge_feat_mp = self.message_passing(x, edge_index, edge_init_features) pred = self.edge_classifier(edge_feat_mp).squeeze() return pred

时间: 2024-04-12 14:33:38 浏览: 14
这段代码定义了一个名为 `CellTrack_Model` 的神经网络模型,该模型用于细胞轨迹跟踪任务。 在 `__init__` 方法中,模型的各个组件和参数被定义: - `hand_NodeEncoder_dic`、`learned_NodeEncoder_dic`、`intialize_EdgeEncoder_dic`、`message_passing` 和 `edge_classifier_dic` 分别表示手工设计的节点编码器、学习得到的节点编码器、初始化的边编码器、消息传递参数和边分类器的参数字典。 在 `forward` 方法中,定义了模型的前向传播过程: 1. 首先对输入的节点特征 x 进行拆分,得到 x1 和 x2。然后将它们拼接成一个新的输入 x_init。 2. 计算 x_init 中源节点和目标节点之间的相似度 similarity1,以及它们的绝对差值 abs_init。 3. 分别通过手工设计的节点编码器和学习得到的节点编码器对 x1 和 x2 进行编码。 4. 将编码后的节点特征拼接成新的节点特征 x,并计算 x 中源节点和目标节点之间的相似度 similarity2。 5. 根据源节点和目标节点的特征,以及相似度和差值等特征,拼接成输入边特征 edge_feat_in。 6. 使用初始化的边编码器对输入边特征进行编码得到 edge_init_features。 7. 使用消息传递过程(message_passing)对节点特征和边特征进行传递和更新。 8. 将更新后的边特征通过边分类器进行预测,得到预测结果 pred。 9. 返回预测结果 pred。 这段代码实现了一个用于细胞轨迹跟踪的神经网络模型。通过对输入的节点特征进行编码和传递,最终预测边的标签。

相关推荐

最新推荐

recommend-type

6-10.py

6-10
recommend-type

基于机器学习的入侵检测系统+源码+说明.zip

基于机器学习的入侵检测系统+源码+说明.zip
recommend-type

matlab基于潜在低秩表示的红外与可见光图像融合.zip

matlab基于潜在低秩表示的红外与可见光图像融合.zip
recommend-type

4-5.py

4-5
recommend-type

基于tensorflow使用简单线性回归实现波士顿房价预测源码.zip

基于tensorflow使用简单线性回归实现波士顿房价预测源码.zip
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

2. 通过python绘制y=e-xsin(2πx)图像

可以使用matplotlib库来绘制这个函数的图像。以下是一段示例代码: ```python import numpy as np import matplotlib.pyplot as plt def func(x): return np.exp(-x) * np.sin(2 * np.pi * x) x = np.linspace(0, 5, 500) y = func(x) plt.plot(x, y) plt.xlabel('x') plt.ylabel('y') plt.title('y = e^{-x} sin(2πx)') plt.show() ``` 运行这段
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。