stm32 怎么配置adc

时间: 2024-03-17 18:33:13 浏览: 35
对于配置STM32的ADC(模数转换器),以下是一般的步骤: 1. 打开RCC时钟:确保ADC外设的时钟已经打开。在STM32的RCC寄存器中,需要使能相应的ADC时钟。 2. 配置GPIO引脚:选择要用作ADC输入的引脚,并将其设置为模拟输入模式。 3. 配置ADC外设:设置ADC的工作模式、采样分辨率、采样周期等参数。可以使用ADC_CR1和ADC_CR2寄存器进行配置。 4. 配置通道:选择要使用的ADC通道。在多通道模式下,可以选择多个通道进行采样。 5. 校准ADC:在使用ADC之前需要对其进行校准。可以通过设置ADC_CR2寄存器中的CAL位来触发校准。 6. 启动ADC转换:使用软件触发或外部触发方式启动ADC的转换过程。 7. 等待转换完成:可以通过查询转换完成标志位或使用中断来等待ADC转换的完成。 8. 读取转换结果:读取ADC_DR寄存器中的转换结果,即模拟信号的数字化值。 以上是大致的步骤,实际在代码中可以根据具体需求进行适当的配置和调整。请注意,具体的配置和操作可能因不同的STM32系列而有所差异。因此,在实际开发中,最好参考芯片的参考手册或者官方提供的例程进行配置。
相关问题

stm32配置adc

下面是使用STM32CubeMX配置ADC的步骤: 1. 打开STM32CubeMX软件,并选择要使用的MCU型号。 2. 在Pinout & Configuration选项卡中,将需要使用的ADC引脚设置为ADC模式。 3. 在Configuration选项卡中,选择ADC模块,并启用需要使用的ADC通道。同时,您可以设置ADC分辨率、采样时间和触发方式等参数。 4. 在Clock Configuration选项卡中,启用ADC时钟,并将其设置为所需的速率。 5. 生成代码并导入到您的IDE中,然后在代码中调用HAL_ADC_Start()函数启动ADC转换。 下面是一个示例代码片段: ```c /* 配置并启动ADC */ ADC_HandleTypeDef hadc1; void MX_ADC1_Init(void) { /* 启用ADC时钟 */ __HAL_RCC_ADC1_CLK_ENABLE(); /* 配置ADC通道 */ hadc1.Instance = ADC1; hadc1.Init.ClockPrescaler = ADC_CLOCK_SYNC_PCLK_DIV4; hadc1.Init.Resolution = ADC_RESOLUTION_12B; hadc1.Init.ScanConvMode = DISABLE; hadc1.Init.ContinuousConvMode = DISABLE; hadc1.Init.DiscontinuousConvMode = DISABLE; hadc1.Init.NbrOfDiscConversion = 0; hadc1.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE; hadc1.Init.ExternalTrigConv = ADC_SOFTWARE_START; hadc1.Init.DataAlign = ADC_DATAALIGN_RIGHT; hadc1.Init.NbrOfConversion = 1; hadc1.Init.DMAContinuousRequests = DISABLE; hadc1.Init.EOCSelection = ADC_EOC_SINGLE_CONV; if (HAL_ADC_Init(&hadc1) != HAL_OK) { Error_Handler(); } /* 配置ADC通道1 */ ADC_ChannelConfTypeDef sConfig; sConfig.Channel = ADC_CHANNEL_1; sConfig.Rank = 1; sConfig.SingleDiff = ADC_SINGLE_ENDED; sConfig.SamplingTime = ADC_SAMPLETIME_480CYCLES; sConfig.OffsetNumber = ADC_OFFSET_NONE; sConfig.Offset = 0; if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK) { Error_Handler(); } } /* 启动ADC转换 */ void HAL_ADC_MspInit(ADC_HandleTypeDef *hadc) { GPIO_InitTypeDef GPIO_InitStruct = {0}; if (hadc->Instance == ADC1) { /* 启用ADC时钟 */ __HAL_RCC_ADC1_CLK_ENABLE(); /* 配置ADC引脚 */ __HAL_RCC_GPIOA_CLK_ENABLE(); GPIO_InitStruct.Pin = GPIO_PIN_0; GPIO_InitStruct.Mode = GPIO_MODE_ANALOG; GPIO_InitStruct.Pull = GPIO_NOPULL; HAL_GPIO_Init(GPIOA, &GPIO_InitStruct); } } int main(void) { /* 初始化ADC */ MX_ADC1_Init(); /* 启动ADC转换 */ if (HAL_ADC_Start(&hadc1) != HAL_OK) { Error_Handler(); } /* 循环读取ADC值 */ while (1) { if (HAL_ADC_PollForConversion(&hadc1, 100) == HAL_OK) { uint32_t adc_value = HAL_ADC_GetValue(&hadc1); printf("ADC value: %d\r\n", adc_value); } } } ```

stm32配置ADC1通道4

以下是配置STM32的ADC1通道4的步骤: 1. 首先,需要使能ADC1的时钟。可以使用以下代码: ```c RCC_APB2PeriphClockCmd(RCC_APB2Periph_ADC1, ENABLE); ``` 2. 然后,需要配置GPIO引脚,将其连接到ADC1的输入通道。这里假设使用PA4作为输入通道。可以使用以下代码: ```c GPIO_InitTypeDef GPIO_InitStructure; GPIO_InitStructure.GPIO_Pin = GPIO_Pin_4; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AIN; GPIO_Init(GPIOA, &GPIO_InitStructure); ``` 3. 接下来,需要配置ADC1。可以使用以下代码: ```c ADC_InitTypeDef ADC_InitStructure; ADC_InitStructure.ADC_Mode = ADC_Mode_Independent; ADC_InitStructure.ADC_ScanConvMode = DISABLE; ADC_InitStructure.ADC_ContinuousConvMode = DISABLE; ADC_InitStructure.ADC_ExternalTrigConv = ADC_ExternalTrigConv_None; ADC_InitStructure.ADC_DataAlign = ADC_DataAlign_Right; ADC_InitStructure.ADC_NbrOfChannel = 1; ADC_Init(ADC1, &ADC_InitStructure); ``` 4. 然后,需要配置ADC1的通道4。可以使用以下代码: ```c ADC_RegularChannelConfig(ADC1, ADC_Channel_4, 1, ADC_SampleTime_55Cycles5); ``` 这里使用了ADC_Channel_4作为输入通道,并且设置采样时间为55.5个时钟周期。 5. 最后,启动ADC1进行转换。可以使用以下代码: ```c ADC_Cmd(ADC1, ENABLE); ``` 然后,可以使用以下代码开始转换: ```c ADC_SoftwareStartConvCmd(ADC1, ENABLE); ``` 转换完成后,可以使用以下代码读取转换结果: ```c uint16_t adc_value = ADC_GetConversionValue(ADC1); ``` 在这里,将转换结果存储在一个16位的整数变量中。 以上就是配置STM32的ADC1通道4的步骤。

相关推荐

最新推荐

recommend-type

STM32 ADC采样

STM32 ADC 采样 STM32F103ZET6微控制器内部集成了12位的逐次逼近型模拟数字转换器(Analog-to-Digital Converter,ADC),它有多达18个通道,可以测量16个外部和2个内部信号源。ADC的主要功能是将模拟信号转换成...
recommend-type

STM32_ADC多通道采样的例子

STM32 ADC多通道转换 描述:用ADC连续采集11路模拟信号,并由DMA传输到内存。ADC配置为扫描并且连续转换模式,ADC的时钟配置为12MHZ。在每次转换结束后,由DMA循环将转换的数据传输到内存中。ADC可以连续采集N次求...
recommend-type

STM32定时器触发ADC +DMA

Stm32的ADC有DMA功能这都毋庸置疑,也是我们用的最多的!然而,如果我们要对一个信号(比如脉搏信号)进行定时采样(也就是隔一段时间,比如说2ms),有三种方法: 1、使用定时器中断每隔一定时间进行ADC转换,这样...
recommend-type

STM32 DMA中断模式下ADC多通道数据采集+均值滤波

在 STM32 中,ADC 的配置包括选择工作模式、通道配置、采样率配置等。在本程序中,我们使用的是独立工作模式,即每个通道的采样率和触发方式可以独立配置。 5. DMA 的配置 在 STM32 中,DMA 的配置包括选择 DMA ...
recommend-type

CUBEMX-STM32F030学习笔记

本笔记旨在详细介绍STM32F030的功能、原理、CUBE配置图片步骤、选项功能意义、加入的功能代码、性能范围和实践经验值。 一、STM32F030F4P6简介 STM32F030F4P6是一款32位微控制器,基于ARM Cortex-M0内核,具有16KB...
recommend-type

京瓷TASKalfa系列维修手册:安全与操作指南

"该资源是一份针对京瓷TASKalfa系列多款型号打印机的维修手册,包括TASKalfa 2020/2021/2057,TASKalfa 2220/2221,TASKalfa 2320/2321/2358,以及DP-480,DU-480,PF-480等设备。手册标注为机密,仅供授权的京瓷工程师使用,强调不得泄露内容。手册内包含了重要的安全注意事项,提醒维修人员在处理电池时要防止爆炸风险,并且应按照当地法规处理废旧电池。此外,手册还详细区分了不同型号产品的打印速度,如TASKalfa 2020/2021/2057的打印速度为20张/分钟,其他型号则分别对应不同的打印速度。手册还包括修订记录,以确保信息的最新和准确性。" 本文档详尽阐述了京瓷TASKalfa系列多功能一体机的维修指南,适用于多种型号,包括速度各异的打印设备。手册中的安全警告部分尤为重要,旨在保护维修人员、用户以及设备的安全。维修人员在操作前必须熟知这些警告,以避免潜在的危险,如不当更换电池可能导致的爆炸风险。同时,手册还强调了废旧电池的合法和安全处理方法,提醒维修人员遵守地方固体废弃物法规。 手册的结构清晰,有专门的修订记录,这表明手册会随着设备的更新和技术的改进不断得到完善。维修人员可以依靠这份手册获取最新的维修信息和操作指南,确保设备的正常运行和维护。 此外,手册中对不同型号的打印速度进行了明确的区分,这对于诊断问题和优化设备性能至关重要。例如,TASKalfa 2020/2021/2057系列的打印速度为20张/分钟,而TASKalfa 2220/2221和2320/2321/2358系列则分别具有稍快的打印速率。这些信息对于识别设备性能差异和优化工作流程非常有用。 总体而言,这份维修手册是京瓷TASKalfa系列设备维修保养的重要参考资料,不仅提供了详细的操作指导,还强调了安全性和合规性,对于授权的维修工程师来说是不可或缺的工具。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【进阶】入侵检测系统简介

![【进阶】入侵检测系统简介](http://www.csreviews.cn/wp-content/uploads/2020/04/ce5d97858653b8f239734eb28ae43f8.png) # 1. 入侵检测系统概述** 入侵检测系统(IDS)是一种网络安全工具,用于检测和预防未经授权的访问、滥用、异常或违反安全策略的行为。IDS通过监控网络流量、系统日志和系统活动来识别潜在的威胁,并向管理员发出警报。 IDS可以分为两大类:基于网络的IDS(NIDS)和基于主机的IDS(HIDS)。NIDS监控网络流量,而HIDS监控单个主机的活动。IDS通常使用签名检测、异常检测和行
recommend-type

轨道障碍物智能识别系统开发

轨道障碍物智能识别系统是一种结合了计算机视觉、人工智能和机器学习技术的系统,主要用于监控和管理铁路、航空或航天器的运行安全。它的主要任务是实时检测和分析轨道上的潜在障碍物,如行人、车辆、物体碎片等,以防止这些障碍物对飞行或行驶路径造成威胁。 开发这样的系统主要包括以下几个步骤: 1. **数据收集**:使用高分辨率摄像头、雷达或激光雷达等设备获取轨道周围的实时视频或数据。 2. **图像处理**:对收集到的图像进行预处理,包括去噪、增强和分割,以便更好地提取有用信息。 3. **特征提取**:利用深度学习模型(如卷积神经网络)提取障碍物的特征,如形状、颜色和运动模式。 4. **目标
recommend-type

小波变换在视频压缩中的应用

"多媒体通信技术视频信息压缩与处理(共17张PPT).pptx" 多媒体通信技术涉及的关键领域之一是视频信息压缩与处理,这在现代数字化社会中至关重要,尤其是在传输和存储大量视频数据时。本资料通过17张PPT详细介绍了这一主题,特别是聚焦于小波变换编码和分形编码两种新型的图像压缩技术。 4.5.1 小波变换编码是针对宽带图像数据压缩的一种高效方法。与离散余弦变换(DCT)相比,小波变换能够更好地适应具有复杂结构和高频细节的图像。DCT对于窄带图像信号效果良好,其变换系数主要集中在低频部分,但对于宽带图像,DCT的系数矩阵中的非零系数分布较广,压缩效率相对较低。小波变换则允许在频率上自由伸缩,能够更精确地捕捉图像的局部特征,因此在压缩宽带图像时表现出更高的效率。 小波变换与傅里叶变换有本质的区别。傅里叶变换依赖于一组固定频率的正弦波来表示信号,而小波分析则是通过母小波的不同移位和缩放来表示信号,这种方法对非平稳和局部特征的信号描述更为精确。小波变换的优势在于同时提供了时间和频率域的局部信息,而傅里叶变换只提供频率域信息,却丢失了时间信息的局部化。 在实际应用中,小波变换常常采用八带分解等子带编码方法,将低频部分细化,高频部分则根据需要进行不同程度的分解,以此达到理想的压缩效果。通过改变小波的平移和缩放,可以获取不同分辨率的图像,从而实现按需的图像质量与压缩率的平衡。 4.5.2 分形编码是另一种有效的图像压缩技术,特别适用于处理不规则和自相似的图像特征。分形理论源自自然界的复杂形态,如山脉、云彩和生物组织,它们在不同尺度上表现出相似的结构。通过分形编码,可以将这些复杂的形状和纹理用较少的数据来表示,从而实现高压缩比。分形编码利用了图像中的分形特性,将其转化为分形块,然后进行编码,这在处理具有丰富细节和不规则边缘的图像时尤其有效。 小波变换和分形编码都是多媒体通信技术中视频信息压缩的重要手段,它们分别以不同的方式处理图像数据,旨在减少存储和传输的需求,同时保持图像的质量。这两种技术在现代图像处理、视频编码标准(如JPEG2000)中都有广泛应用。