解释delay_ms(10); AD2_Value =ADC_filter(2); if(AD2_Value <= 100) AD2_Value = 100; if(AD2_Value >= 1023) AD2_Value = 1023; AD_Fre(AD2_Value); AD5_Value=123; if(UART_Flag==0) { delay_ms(250); UART_TX(AD2_Value,2); //串口输出 delay_ms(250); UART_TX(AD5_Value,5); UART_Flag=1;

时间: 2023-09-03 20:17:00 浏览: 54
这段代码是一个程序片段,以下是对每行代码的解释: 1. `delay_ms(10);` 表示延时10毫秒,即暂停程序的执行10毫秒。 2. `AD2_Value = ADC_filter(2);` 表示将ADC通道2的原始值经过滤波函数ADC_filter处理后,将结果赋值给AD2_Value变量。 3. `if(AD2_Value <= 100) AD2_Value = 100;` 表示如果AD2_Value小于等于100,则将AD2_Value的值设置为100。 4. `if(AD2_Value >= 1023) AD2_Value = 1023;` 表示如果AD2_Value大于等于1023,则将AD2_Value的值设置为1023。 5. `AD_Fre(AD2_Value);` 表示将AD2_Value的值作为参数,调用AD_Fre函数进行处理。 6. `AD5_Value = 123;` 表示将AD5_Value的值设置为123。 7. `if(UART_Flag == 0)` 表示如果UART_Flag的值为0,则执行下面的代码块。 8. `delay_ms(250);` 表示延时250毫秒。 9. `UART_TX(AD2_Value, 2);` 表示调用UART_TX函数,将AD2_Value和2作为参数进行串口输出。 10. `delay_ms(250);` 表示延时250毫秒。 11. `UART_TX(AD5_Value, 5);` 表示调用UART_TX函数,将AD5_Value和5作为参数进行串口输出。 12. `UART_Flag = 1;` 表示将UART_Flag的值设置为1。 这段代码的功能是先对AD2_Value进行滤波处理,然后根据一定条件对AD2_Value进行限制,接着调用AD_Fre函数进行处理,将AD2_Value和AD5_Value的值分别通过串口输出,最后设置UART_Flag的值。延时函数用于控制串口输出的时间间隔。

相关推荐

for (uint8_t i = 0 ; i < LED_NUM; i++) { led_set(i, g_value_r[i], g_value_g[i], g_value_b[i]); } led_on(); HAL_Delay(100); if (((g_value_r[0] >= 0xFF - g_value_delta) || (g_value_b[0] <= g_value_delta/2) )&& g_value_g[0] == 0x00 && direction == 6) { direction = 1; g_value_r[0] = 0xFF; g_value_g[0] = 0x00; g_value_b[0] = 0x00; } else if (g_value_r[0] == 0xFF && g_value_g[0] >= 0xFF - g_value_delta && g_value_b[0] == 0x00 && direction == 1) { g_value_g[0] = 0xFF; direction = 2; } else if (g_value_r[0] <= g_value_delta && g_value_g[0] == 0xff && g_value_b[0] == 0x00 && direction == 2) { g_value_r[0] = 0x00; direction = 3; } else if (g_value_r[0] == 0x00 && g_value_g[0] == 0xff && g_value_b[0] >= (0xFF - g_value_delta) && direction == 3) { g_value_b[0] = 0xff; direction = 4; } else if (g_value_r[0] == 0x00 && g_value_g[0] <= g_value_delta && g_value_b[0] == 0xff && direction == 4) { g_value_g[0] = 0x00; direction = 5; } else if (g_value_r[0] >= (0x8B - g_value_delta) && g_value_g[0] == 0x00 && g_value_b[0] == 0xff && direction == 5) { direction = 6; g_value_r[0] = 0x8B; g_value_g[0] = 0x00; g_value_b[0] = 0xFF; } if (direction == 1) { g_value_g[0] = g_value_g[0] + g_value_delta; } else if (direction == 2) { g_value_r[0] = g_value_r[0] - g_value_delta; } else if (direction == 3) { g_value_b[0] = g_value_b[0] + g_value_delta; } else if (direction == 4) { g_value_g[0] = g_value_g[0] - g_value_delta; } else if (direction == 5) { g_value_r[0] = g_value_r[0] + g_value_delta; } else if (direction == 6) { g_value_r[0] = g_value_r[0] + g_value_delta/2; g_value_b[0] = g_value_b[0] - g_value_delta; } for (int i = 29 ; i >0; i-- ) { g_value_r[i] = g_value_r[i-1]; g_value_g[i] = g_value_g[i-1]; g_value_b[i] = g_value_b[i-1]; }

#include "bflb_adc.h" #include "bflb_mtimer.h" #include "board.h" struct bflb_device_s adc; #define TEST_ADC_CHANNELS 2 #define TEST_COUNT 10 struct bflb_adc_channel_s chan[] = { { .pos_chan = ADC_CHANNEL_2, .neg_chan = ADC_CHANNEL_GND }, { .pos_chan = ADC_CHANNEL_GND, .neg_chan = ADC_CHANNEL_3 }, }; int main(void) { board_init(); board_adc_gpio_init(); adc = bflb_device_get_by_name("adc"); / adc clock = XCLK / 2 / 32 */ struct bflb_adc_config_s cfg; cfg.clk_div = ADC_CLK_DIV_32; cfg.scan_conv_mode = true; cfg.continuous_conv_mode = false; cfg.differential_mode = true; cfg.resolution = ADC_RESOLUTION_16B; cfg.vref = ADC_VREF_3P2V; bflb_adc_init(adc, &cfg); bflb_adc_channel_config(adc, chan, TEST_ADC_CHANNELS); for (uint32_t i = 0; i < TEST_COUNT; i++) { bflb_adc_start_conversion(adc); while (bflb_adc_get_count(adc) < TEST_ADC_CHANNELS) { bflb_mtimer_delay_ms(1); } for (size_t j = 0; j < TEST_ADC_CHANNELS; j++) { struct bflb_adc_result_s result; uint32_t raw_data = bflb_adc_read_raw(adc); printf("raw data:%08x\r\n", raw_data); bflb_adc_parse_result(adc, &raw_data, &result, 1); printf("pos chan %d,neg chan %d,%d mv \r\n", result.pos_chan, result.neg_chan, result.millivolt); } bflb_adc_stop_conversion(adc); bflb_mtimer_delay_ms(100); } while (1) { } }根据以上代码对bl618程序的编写对以下stm32中代码#include "stm32f10x.h" #include "delay.h" #include "FSR.h" #include "usart.h" #include "adc.h" #define PRESS_MIN 20 #define PRESS_MAX 6000 #define VOLTAGE_MIN 150 #define VOLTAGE_MAX 3300 u8 state = 0; u16 val = 0; u16 value_AD = 0; long PRESS_AO = 0; int VOLTAGE_AO = 0; long map(long x, long in_min, long in_max, long out_min, long out_max); int main(void) { delay_init(); NVIC_Configuration(); uart_init(9600); Adc_Init(); delay_ms(1000); printf("Test start\r\n"); while(1) { value_AD = Get_Adc_Average(1,10); VOLTAGE_AO = map(value_AD, 0, 4095, 0, 3300); if(VOLTAGE_AO < VOLTAGE_MIN) { PRESS_AO = 0; } else if(VOLTAGE_AO > VOLTAGE_MAX) { PRESS_AO = PRESS_MAX; } else { PRESS_AO = map(VOLTAGE_AO, VOLTAGE_MIN, VOLTAGE_MAX, PRESS_MIN, PRESS_MAX); } printf("ADÖµ = %d,µçѹ = %d mv,ѹÁ¦ = %ld g\r\n",value_AD,VOLTAGE_AO,PRESS_AO); delay_ms(500); } } long map(long x, long in_min, long in_max, long out_min, long out_max) { return (x - in_min) * (out_max - out_min) / (in_max - in_min) + out_min; }移植到bl618进行改写

最新推荐

recommend-type

allegro高速信号添加PIN_delay的详细步骤

allegro高速信号添加PIN_delay的详细步骤,这是自己使用时整理出来的,可能会有不足的地方。
recommend-type

Java开发案例-springboot-66-自定义starter-源代码+文档.rar

Java开发案例-springboot-66-自定义starter-源代码+文档.rar Java开发案例-springboot-66-自定义starter-源代码+文档.rar Java开发案例-springboot-66-自定义starter-源代码+文档.rar Java开发案例-springboot-66-自定义starter-源代码+文档.rar Java开发案例-springboot-66-自定义starter-源代码+文档.rar Java开发案例-springboot-66-自定义starter-源代码+文档.rar
recommend-type

单家独院式别墅图纸D027-三层-12.80&10.50米-施工图.dwg

单家独院式别墅图纸D027-三层-12.80&10.50米-施工图.dwg
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB柱状图在信号处理中的应用:可视化信号特征和频谱分析

![matlab画柱状图](https://img-blog.csdnimg.cn/3f32348f1c9c4481a6f5931993732f97.png) # 1. MATLAB柱状图概述** MATLAB柱状图是一种图形化工具,用于可视化数据中不同类别或组的分布情况。它通过绘制垂直条形来表示每个类别或组中的数据值。柱状图在信号处理中广泛用于可视化信号特征和进行频谱分析。 柱状图的优点在于其简单易懂,能够直观地展示数据分布。在信号处理中,柱状图可以帮助工程师识别信号中的模式、趋势和异常情况,从而为信号分析和处理提供有价值的见解。 # 2. 柱状图在信号处理中的应用 柱状图在信号处理
recommend-type

HSV转为RGB的计算公式

HSV (Hue, Saturation, Value) 和 RGB (Red, Green, Blue) 是两种表示颜色的方式。下面是将 HSV 转换为 RGB 的计算公式: 1. 将 HSV 中的 S 和 V 值除以 100,得到范围在 0~1 之间的值。 2. 计算色相 H 在 RGB 中的值。如果 H 的范围在 0~60 或者 300~360 之间,则 R = V,G = (H/60)×V,B = 0。如果 H 的范围在 60~120 之间,则 R = ((120-H)/60)×V,G = V,B = 0。如果 H 的范围在 120~180 之间,则 R = 0,G = V,B =
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

MATLAB柱状图在数据分析中的作用:从可视化到洞察

![MATLAB柱状图在数据分析中的作用:从可视化到洞察](https://img-blog.csdnimg.cn/img_convert/1a36558cefc0339f7836cca7680c0aef.png) # 1. MATLAB柱状图概述** 柱状图是一种广泛用于数据可视化的图表类型,它使用垂直条形来表示数据中不同类别或组别的值。在MATLAB中,柱状图通过`bar`函数创建,该函数接受数据向量或矩阵作为输入,并生成相应的高度条形。 柱状图的优点在于其简单性和易于理解性。它们可以快速有效地传达数据分布和组别之间的比较。此外,MATLAB提供了广泛的定制选项,允许用户调整条形颜色、