模型优化器AdamW的代码怎么写
时间: 2024-06-17 19:03:03 浏览: 139
AdamW是一种基于Adam优化算法的变种,其主要区别在于对于权重衰减(Weight Decay)的处理方式不同。相比于Adam使用的L2正则化,AdamW采用的是权重衰减。
下面是一个简单的Python实现AdamW优化器的代码:
```python
class AdamW(Optimizer):
def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=0):
defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay)
super(AdamW, self).__init__(params, defaults)
def step(self, closure=None):
loss = None
if closure is not None:
loss = closure()
for group in self.param_groups:
weight_decay = group['weight_decay']
eps = group['eps']
beta1, beta2 = group['betas']
lr = group['lr']
for p in group['params']:
if p.grad is None:
continue
grad = p.grad.data
if grad.is_sparse:
raise RuntimeError('AdamW does not support sparse gradients')
state = self.state[p]
# Initialize state
if len(state) == 0:
state['step'] = 0
state['exp_avg'] = torch.zeros_like(p.data)
state['exp_avg_sq'] = torch.zeros_like(p.data)
exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq']
beta2_t = beta2 ** state['step']
state['step'] += 1
# Decay the weights
if weight_decay != 0:
p.data.add_(-weight_decay * lr, p.data)
# Perform optimization step
exp_avg.mul_(beta1).add_(1 - beta1, grad)
exp_avg_sq.mul_(beta2).addcmul_(1 - beta2, grad, grad)
denom = (exp_avg_sq.sqrt() / math.sqrt(1 - beta2_t)).add_(eps)
step_size = lr / (1 - beta1 ** state['step'])
p.data.addcdiv_(-step_size, exp_avg, denom)
return loss
```
上述代码实现了AdamW的优化过程,其中主要区别在于对权重衰减(weight_decay)的处理方式,采用了 L2正则化的替代方案。值得注意的是,上述代码实现的是torch中的AdamW优化器,如果要在其他框架或自己实现的深度学习框架中使用,需要根据实际情况进行调整。
阅读全文