maskrcnn详解
时间: 2023-09-04 11:17:36 浏览: 133
深度学习之实例分割-MaskRCNN
Mask R-CNN是何凯明大神的新作,它是一种在有效检测目标的同时输出高质量的实例分割mask的方法。它是对faster r-cnn的扩展,通过增加一个预测分割mask的分支,实现了物体检测和语义分割的结合,从而达到了实例分割的效果。
Mask R-CNN的网络架构主要由两部分组成:基于Faster-RCNN的目标检测部分和基于FCN的语义分割部分。前者完成目标检测任务,后者可以准确完成语义分割的任务。具体来说,Mask R-CNN在Faster-RCNN的基础上增加了FCN来产生对应的MASK分支。同时,为了解决ROI Pooling中存在的像素偏差问题,提出了ROI Align策略,加上FCN精准的像素MASK,使得整个算法可以实现高准确率的目标检测和实例分割。<span class="em">1</span><span class="em">2</span><span class="em">3</span>
#### 引用[.reference_title]
- *1* *2* [Mask R-CNN讲解](https://blog.csdn.net/weixin_43702653/article/details/124377487)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"]
- *3* [Mask RCNN算法详解(总结)](https://blog.csdn.net/weixin_44312422/article/details/121000465)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"]
[ .reference_list ]
阅读全文