含权重的K-means代码
时间: 2024-08-12 11:07:22 浏览: 89
含权重的K-means(Weighted K-means)是在传统的K-means算法基础上对每个样本点赋予一个权重,这样在计算聚类中心时会更侧重于那些具有较大权重的样本。这样做的目的是为了调整数据中各个部分的重要性,特别是在数据分布不均匀的情况下。下面是基本的含权重K-means代码概述:
```python
import numpy as np
class WeightedKMeans:
def __init__(self, k, max_iterations, distance_metric='euclidean'):
self.k = k
self.max_iterations = max_iterations
self.distance_metric = distance_metric
self.centroids = None
self.labels = None
def _distance(self, X, centroids):
if self.distance_metric == 'euclidean':
return np.linalg.norm(X - centroids, axis=1)
else: # 这里假设你已经定义了其他距离度量方法
raise NotImplementedError
def _reassign_clusters(self, X):
distances = self._distance(X, self.centroids)
assignments = distances.argmin(axis=1)
return assignments
def fit(self, X, weights=None):
if weights is None:
weights = np.ones(len(X)) / len(X) # 如果没有提供权重,使用等权值
self.centroids = self.init_centroids(X, self.k)
for _ in range(self.max_iterations):
assignments = self._reassign_clusters(X * weights)
new_centroids = np.array([X[assignments == i].mean(axis=0) * weights[assignments == i].sum() for i in range(self.k)])
if np.allclose(self.centroids, new_centroids): # 如果聚类中心不再变化,算法停止
break
self.centroids = new_centroids
self.labels = assignments
def init_centroids(self, X, k):
# 初始化方法,根据需求选择随机点、K-Means++等
pass # 这部分取决于具体实现
# 使用示例
wkm = WeightedKMeans(k=3, max_iterations=100)
wkm.fit(X, weights=your_weights)
```
阅读全文