vgg16模型代码tensorflow2,cifar
时间: 2023-09-28 07:02:26 浏览: 119
VGG16是一个经典的深度卷积神经网络模型,适用于图像分类任务。在TensorFlow 2.0中,可以使用Keras API来实现VGG16模型,下面是一个用于CIFAR数据集的VGG16模型代码示例。
首先,我们需要导入所需要的库和模块:
```
import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Conv2D, MaxPooling2D, Flatten, Dense
```
接下来,我们可以定义VGG16模型的结构:
```
def VGG16(input_shape, num_classes):
model = Sequential()
model.add(Conv2D(64, (3, 3), padding='same', activation='relu', input_shape=input_shape))
model.add(Conv2D(64, (3, 3), padding='same', activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))
model.add(Conv2D(128, (3, 3), padding='same', activation='relu'))
model.add(Conv2D(128, (3, 3), padding='same', activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))
model.add(Conv2D(256, (3, 3), padding='same', activation='relu'))
model.add(Conv2D(256, (3, 3), padding='same', activation='relu'))
model.add(Conv2D(256, (3, 3), padding='same', activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))
model.add(Conv2D(512, (3, 3), padding='same', activation='relu'))
model.add(Conv2D(512, (3, 3), padding='same', activation='relu'))
model.add(Conv2D(512, (3, 3), padding='same', activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))
model.add(Conv2D(512, (3, 3), padding='same', activation='relu'))
model.add(Conv2D(512, (3, 3), padding='same', activation='relu'))
model.add(Conv2D(512, (3, 3), padding='same', activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))
model.add(Flatten())
model.add(Dense(4096, activation='relu'))
model.add(Dense(4096, activation='relu'))
model.add(Dense(num_classes, activation='softmax'))
return model
```
接下来,我们可以编写训练和评估模型的代码。
```
# 加载CIFAR数据集
(x_train, y_train), (x_test, y_test) = tf.keras.datasets.cifar10.load_data()
# 数据预处理
x_train = x_train / 255.0
x_test = x_test / 255.0
y_train = tf.keras.utils.to_categorical(y_train, num_classes=10)
y_test = tf.keras.utils.to_categorical(y_test, num_classes=10)
# 定义模型超参数
input_shape = x_train[0].shape
num_classes = 10
# 创建VGG16模型
model = VGG16(input_shape, num_classes)
# 编译模型
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
# 训练模型
model.fit(x_train, y_train, batch_size=128, epochs=10, validation_data=(x_test, y_test))
# 评估模型
loss, accuracy = model.evaluate(x_test, y_test)
print('Test accuracy:', accuracy)
```
上述代码中,首先加载了CIFAR数据集,然后对数据进行预处理,将标签进行独热编码。之后,定义了VGG16模型的输入形状和类别数,并根据此定义模型。在编译模型后,使用训练数据进行训练,然后使用测试数据进行评估,最后打印出模型的准确率。
希望能对你有所帮助!
阅读全文