生成对抗网络matlab2021a
时间: 2023-11-28 20:45:34 浏览: 161
生成对抗网络(GAN)是一种深度学习模型,用于生成与训练数据类似的新数据。在MATLAB 2021a中,可以使用Deep Learning Toolbox中的函数来实现GAN模型。以下是一个简单的GAN示例:
```matlab
% 导入数据
load digitTrainSet
% 定义生成器网络
numLatentInputs = 100;
numGeneratorFilters = 64 * 4;
generatorFilterSize = 4;
generator = [
imageInputLayer([1 1 numLatentInputs],'Normalization','none','Name','in')
projectAndReshapeLayer(numGeneratorFilters*7*7,'Name','proj')
transposedConv2dLayer(generatorFilterSize,generatorFilterSize,numGeneratorFilters*2,'Name','tconv1')
batchNormalizationLayer('Name','bn1')
reluLayer('Name','relu1')
transposedConv2dLayer(generatorFilterSize,generatorFilterSize,numGeneratorFilters,'Stride',2,'Cropping',1,'Name','tconv2')
batchNormalizationLayer('Name','bn2')
reluLayer('Name','relu2')
transposedConv2dLayer(generatorFilterSize,generatorFilterSize,1,'Stride',2,'Cropping',1,'Name','tconv3')
tanhLayer('Name','tanh')];
% 定义判别器网络
numDiscriminatorFilters = 64;
discriminatorFilterSize = 4;
discriminator = [
imageInputLayer([28 28 1],'Name','in')
convolution2dLayer(discriminatorFilterSize,discriminatorFilterSize,numDiscriminatorFilters,'Stride',2,'Padding',1,'Name','conv1')
leakyReluLayer(0.2,'Name','lrelu1')
convolution2dLayer(discriminatorFilterSize,discriminatorFilterSize,numDiscriminatorFilters*2,'Stride',2,'Padding',1,'Name','conv2')
batchNormalizationLayer('Name','bn2')
leakyReluLayer(0.2,'Name','lrelu2')
convolution2dLayer(discriminatorFilterSize,discriminatorFilterSize,numDiscriminatorFilters*4,'Stride',2,'Padding',1,'Name','conv3')
batchNormalizationLayer('Name','bn3')
leakyReluLayer(0.2,'Name','lrelu3')
convolution2dLayer(discriminatorFilterSize,discriminatorFilterSize,numDiscriminatorFilters*8,'Stride',2,'Padding',1,'Name','conv4')
batchNormalizationLayer('Name','bn4')
leakyReluLayer(0.2,'Name','lrelu4')
fullyConnectedLayer(1,'Name','fc')
sigmoidLayer('Name','sigmoid')];
% 定义GAN网络
gan = ganNetwork(generator,discriminator);
% 训练GAN网络
options = trainingOptions('adam', ...
'MaxEpochs',100, ...
'MiniBatchSize',128, ...
'Verbose',false, ...
'Plots','training-progress');
[trainedGan,trainInfo] = trainNetwork(digitTrainSet,gan,options);
% 生成新数据
noise = randn(1,1,numLatentInputs,16);
generatedImages = predict(trainedGan.Generator,noise);
montage(generatedImages)
```
上述代码中,我们首先导入了一个手写数字数据集,然后定义了一个生成器网络和一个判别器网络。接着,我们使用ganNetwork函数将这两个网络组合成一个GAN网络。最后,我们使用trainNetwork函数训练GAN网络,并使用predict函数生成新数据。
阅读全文