生成对抗网络matlab代码
时间: 2023-09-19 10:07:20 浏览: 170
下面是一个生成对抗网络(GAN)的MATLAB代码示例:
生成器网络的代码:
```matlab
function G = generator(Z)
hidden_size = 128;
output_size = 784;
W1 = randn(hidden_size, size(Z, 2));
b1 = zeros(hidden_size, 1);
W2 = randn(output_size, hidden_size);
b2 = zeros(output_size, 1);
G = sigmoid(W2 * sigmoid(W1 * Z' + b1) + b2);
end
function sig = sigmoid(x)
sig = 1 ./ (1 + exp(-x));
end
```
判别器网络的代码:
```matlab
function D = discriminator(X)
hidden_size = 128;
output_size = 1;
W1 = randn(hidden_size, size(X, 2));
b1 = zeros(hidden_size, 1);
W2 = randn(output_size, hidden_size);
b2 = zeros(output_size, 1);
D = sigmoid(W2 * sigmoid(W1 * X' + b1) + b2);
end
function sig = sigmoid(x)
sig = 1 ./ (1 + exp(-x));
end
```
训练过程的代码:
```matlab
% 设置训练参数
num_epochs = 1000;
batch_size = 100;
learning_rate = 0.01;
% 加载数据集(假设为MNIST)
load mnist.mat;
% 初始化生成器和判别器的参数
_dim = 100;
G_params = initialize_params();
D_params = initialize_params();
% 训练循环
for epoch = 1:num_epochs
% 随机打乱数据集
perm = randperm(size(X_train, 2));
X_train = X_train(:, perm);
% 迭代每个batch
for batch = 1:size(X_train, 2)/batch_size
% 从真实数据中随机采样
X_batch = X_train(:, (batch-1)*batch_size+1:batch*batch_size);
% 生成随机噪声
Z = randn(Z_dim, batch_size);
% 前向传播和反向传播
[G_loss, G_grads] = generator_loss_and_grads(G_params, Z, D_params);
[D_loss, D_grads] = discriminator_loss_and_grads(D_params, X_batch, G_params);
% 更新参数
G_params = update_params(G_params, G_grads, learning_rate);
D_params = update_params(D_params, D_grads, learning_rate);
end
% 打印训练过程中的损失
fprintf('Epoch %d: G_loss = %.4f, D_loss = %.4f\n', epoch, G_loss, D_loss);
end
% 生成器损失和梯度的计算
function [G_loss, G_grads] = generator_loss_and_grads(G_params, Z, D_params)
G = generator(Z);
D_fake = discriminator(G);
G_loss = mean(log(1 - D_fake));
dD_fake = -1 ./ (1 - D_fake);
dG_fake = dD_fake .* sigmoid_derivative(G)';
G_grads.W2 = dG_fake * sigmoid(G)' / size(Z, 2);
G_grads.b2 = mean(dG_fake, 2);
G_grads.W1 = (D_params.W2' * dG_fake) .* sigmoid_derivative(G);
G_grads.b1 = mean((D_params.W2' * dG_fake) .* sigmoid_derivative(G), 2);
end
% 判别器损失和梯度的计算
function [D_loss, D_grads] = discriminator_loss_and_grads(D_params, X, G_params)
D_real = discriminator(X);
D_fake = discriminator(generator(randn(size(X, 1), size(X, 2))), G_params);
D_loss = mean(-log(D_real) - log(1 - D_fake));
dD_real = -1 ./ D_real;
dD_fake = 1 ./ (1 - D_fake);
dX_real = D_params.W2' * dD_real;
dX_fake = G_params
阅读全文