get() takes from 1 to 2 positional arguments but 3 were given
时间: 2024-06-16 13:06:24 浏览: 331
get()是Python中的一个内置函数,用于从字典中获取指定键的值。根据你提供的错误信息,"get()"函数接受1到2个位置参数,但是你传递了3个参数。
通常情况下,"get()"函数接受两个参数:键和可选的默认值。如果字典中存在指定的键,则返回对应的值;如果不存在,则返回默认值。例如:
```
my_dict = {"key1": "value1", "key2": "value2"}
result = my_dict.get("key1", "default_value")
print(result) # 输出: value1
```
在你的情况下,你可能在调用"get()"函数时传递了额外的参数,导致了错误。请检查你的代码,确保只传递了一个或两个参数给"get()"函数。
相关问题
raw_input() takes from 1 to 2 positional arguments but 3 were given
This error message indicates that the function raw_input() was called with three arguments, but it only accepts one or two arguments.
The most common cause of this error is passing too many arguments to the function. For example, if you try to call raw_input() with three strings as arguments, like this:
raw_input("Enter your name: ", "Enter your age: ", "Enter your gender: ")
You will get the "takes from 1 to 2 positional arguments but 3 were given" error message, because raw_input() only accepts one or two arguments.
To fix this error, you need to pass the correct number of arguments to the function. In the case of raw_input(), you should only pass one argument if you want to display a prompt message, like this:
name = raw_input("Enter your name: ")
Or you can call the function without any arguments, like this:
name = raw_input()
刚刚的代码报错了TypeError: get_leaf_nodes() takes from 1 to 2 positional arguments but 4 were given
非常抱歉,我犯了一个错误。在PyWavelets 1.1.1中,get_leaf_nodes()方法仅接受一个参数(即仅接受一个布尔变量)。请使用以下代码替换前面的代码:
```python
import numpy as np
import pywt
# 设置参数
N = 1024 # 信号长度
wavelet = pywt.Wavelet('db4') # 小波基名称
level = 8 # 分解层数
alpha = 0.5 # 小波包阈值系数
# 生成信号
t = np.linspace(0,1,N)
x = np.sin(2*np.pi*10*t) + np.sin(2*np.pi*20*t) + np.sin(2*np.pi*30*t)
# 谐波小波包分解
wp = pywt.WaveletPacket(data=x, wavelet=wavelet, mode='symmetric', maxlevel=level)
nodes = ['aaa', 'aad', 'ada', 'add', 'daa', 'dad', 'dda', 'ddd']
for node in nodes:
if wp[node].level == level:
wp[node].data.fill(0)
# 计算小波包系数的能量
E = np.sum(np.square(wp.get_leaf_nodes(True)))
# 阈值处理
T = alpha * E
for node in wp.get_leaf_nodes(True):
if np.abs(node.data) < T:
node.data.fill(0)
# 谐波小波包重构
y = wp.reconstruct(update=False)
# 绘图
import matplotlib.pyplot as plt
plt.subplot(2,1,1)
plt.plot(t, x)
plt.title('原始信号')
plt.xlabel('时间')
plt.ylabel('幅值')
plt.subplot(2,1,2)
plt.plot(t, y)
plt.title('重构信号')
plt.xlabel('时间')
plt.ylabel('幅值')
plt.show()
```
希望这个版本的代码可以正常运行。
阅读全文