基于HAL库的STM32F1系列,使用RTC闹钟唤醒停止模式的代码

时间: 2024-04-14 14:27:14 浏览: 15
以下是基于HAL库的STM32F1系列使用RTC闹钟唤醒停止模式的代码示例: ```c #include "stm32f1xx_hal.h" RTC_HandleTypeDef hrtc; void SystemClock_Config(void); static void MX_GPIO_Init(void); static void MX_RTC_Init(void); int main(void) { HAL_Init(); SystemClock_Config(); MX_GPIO_Init(); MX_RTC_Init(); while (1) { // 进入低功耗模式 HAL_PWR_EnterSTOPMode(PWR_LOWPOWERREGULATOR_ON, PWR_STOPENTRY_WFI); // 唤醒后继续执行 } } void SystemClock_Config(void) { RCC_OscInitTypeDef RCC_OscInitStruct; RCC_ClkInitTypeDef RCC_ClkInitStruct; __HAL_RCC_PWR_CLK_ENABLE(); __HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE2); RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI; RCC_OscInitStruct.HSIState = RCC_HSI_ON; RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT; RCC_OscInitStruct.PLL.PLLState = RCC_PLL_NONE; if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) { Error_Handler(); } RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2; RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_HSI; RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1; RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1; RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1; if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_0) != HAL_OK) { Error_Handler(); } } void MX_RTC_Init(void) { RTC_TimeTypeDef sTime; RTC_DateTypeDef sDate; RTC_AlarmTypeDef sAlarm; hrtc.Instance = RTC; hrtc.Init.AsynchPrediv = RTC_AUTO_1_SECOND; hrtc.Init.OutPut = RTC_OUTPUTSOURCE_NONE; if (HAL_RTC_Init(&hrtc) != HAL_OK) { Error_Handler(); } sTime.Hours = 0x00; sTime.Minutes = 0x00; sTime.Seconds = 0x00; sTime.H12 = RTC_HOURFORMAT_24; if (HAL_RTC_SetTime(&hrtc, &sTime, RTC_FORMAT_BCD) != HAL_OK) { Error_Handler(); } sAlarm.AlarmTime.Hours = 0x00; sAlarm.AlarmTime.Minutes = 0x01; sAlarm.AlarmTime.Seconds = 0x00; sAlarm.AlarmTime.H12 = RTC_HOURFORMAT_24; sAlarm.AlarmMask = RTC_ALARMMASK_NONE; sAlarm.AlarmSubSecondMask = RTC_ALARMSUBSECONDMASK_ALL; sAlarm.AlarmDateWeekDaySel = RTC_ALARMDATEWEEKDAYSEL_DATE; sAlarm.AlarmDateWeekDay = 0x1; sAlarm.Alarm = RTC_ALARM_A; if (HAL_RTC_SetAlarm_IT(&hrtc, &sAlarm, RTC_FORMAT_BCD) != HAL_OK) { Error_Handler(); } if (HAL_RTCEx_BKUPWrite(&hrtc, RTC_BKP_DR1, 0x32F2) != HAL_OK) { Error_Handler(); } if (HAL_RTCEx_BKUPRead(&hrtc, RTC_BKP_DR1) != 0x32F2) { Error_Handler(); } } void Error_Handler(void) { while (1) { } } #ifdef USE_FULL_ASSERT void assert_failed(uint8_t *file, uint32_t line) { } #endif void HAL_RTC_AlarmAEventCallback(RTC_HandleTypeDef *hrtc) { // RTC闹钟中断回调函数 // 在这里执行唤醒后的操作 // ... } ``` 这段代码初始化了RTC模块,并设置了闹钟的时间为每分钟的第一秒。在主循环中,通过调用`HAL_PWR_EnterSTOPMode()`函数进入低功耗模式,等待RTC闹钟中断唤醒。在`HAL_RTC_AlarmAEventCallback()`函数中,可以执行唤醒后的操作。请根据实际需求修改代码。

相关推荐

最新推荐

recommend-type

STM32F407 RTC 配置理解与总结

本文主要讲述作者对STM32F407的RTC配置的理解与总结,感兴趣的朋友可以看看。
recommend-type

STM32的使用之SPI通信DMA模式

MCU:STM32F303VC,在SPI通信中,可以同时开启发送和接收DMA请求,自动数据的发送和接收,完成数据的交换。
recommend-type

使用HAL新库编写简单stm32程序总结

使用hal库进行简单的stm32程序编写,以及对各种实现方法的总结,包含点亮led灯、外部中断、定时器、DMA串口通讯等简单功能的实现。
recommend-type

STM32 的待机唤醒功能

很多单片机都有低功耗模式,STM32 也不例外。在系统或电源复位以后,微控制器处于运行状态。运行状态下的 HCLK 为 CPU 提供时钟,内核执行程序代码。当 CPU 不需继续运行时,可以利用多个低功耗模式来节省功耗,例如...
recommend-type

[野火EmbedFire]《STM32 HAL库开发实战指南——F103系列》—20211026.pdf

[野火EmbedFire]《STM32 HAL库开发实战指南——F103系列》
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

云原生架构与soa架构区别?

云原生架构和SOA架构是两种不同的架构模式,主要有以下区别: 1. 设计理念不同: 云原生架构的设计理念是“设计为云”,注重应用程序的可移植性、可伸缩性、弹性和高可用性等特点。而SOA架构的设计理念是“面向服务”,注重实现业务逻辑的解耦和复用,提高系统的灵活性和可维护性。 2. 技术实现不同: 云原生架构的实现技术包括Docker、Kubernetes、Service Mesh等,注重容器化、自动化、微服务等技术。而SOA架构的实现技术包括Web Services、消息队列等,注重服务化、异步通信等技术。 3. 应用场景不同: 云原生架构适用于云计算环境下的应用场景,如容器化部署、微服务
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。