nsgaiii多目标算法代码 python
时间: 2024-10-14 13:01:10 浏览: 34
NSGA-III(Non-dominated Sorting Genetic Algorithm III)是一种常用的多目标遗传算法,用于解决多目标优化问题。它改进了早期版本NSGA-III的基本框架:
```python
import numpy as np
from operator import attrgetter
class Individual:
def __init__(self, objectives):
self.objectives = objectives
def fitness_function(individuals):
# 这里需要替换为你的实际目标函数计算
return [individual.objectives for individual in individuals]
def dominance_sort(population):
non_dominated_fronts = []
objectives = population[0].objectives
for ind in population:
front = non_dominated_sort_helper(fronts=non_dominated_fronts,
current_individual=ind,
objectives=objectives)
if front is not None:
non_dominated_fronts.append(front)
return non_dominated_fronts
def non_dominated_sort_helper(fronts, current_individual, objectives):
dominated = False
for front in fronts:
for f1 in front:
if dominates(f1.objectives, current_individual.objectives, objectives):
dominated = True
break
else:
# 如果当前个体未被其他个体支配,则加入非支配前沿
fronts.append([current_individual])
break
else:
# 如果所有前端都无法支配当前个体,则作为新前沿添加
return None if len(fronts) == len(objectives) else [current_individual]
return fronts[current_individual.index] if dominated else None
# ... 其他辅助函数如选择、交叉、变异等 ...
def nsga_iii(pop_size, generations, population):
new_population = population
for _ in range(generations):
offspring = crossover_and_mutate(new_population)
non_dominated_offspring = dominance_sort(offspring)
crowding_distance(sorted(non_dominated_offspring)) # 计算拥挤度
new_population = elitist_selection(new_population + non_dominated_offspring)
return new_population
def crowding_distance(population):
pass # 实现计算每个个体的拥挤度
def elitist_selection(population):
pass # 实现精英保留策略的选择
# 调用nsga_iii并获取最终解集
final_pop = nsga_iii(pop_size, num_generations, initial_population)
```
注意,这个例子提供了一个基础框架,并没有包括具体的拥挤度计算和选择策略,这些部分需要你自己实现。此外,这只是一个简化的版本,实际应用中还需要处理复杂边界条件和其他细节。
阅读全文