声纹识别代码python
时间: 2024-05-13 11:12:20 浏览: 105
声纹识别代码
3星 · 编辑精心推荐
声纹识别是一种基于语音信号的生物识别技术,可以用于人员身份验证、语音识别和语音合成等领域。在Python中,有一些常用的声纹识别库,如pyAudioAnalysis、librosa、scikit-learn等,这些库可以用于处理音频信号、提取声纹特征并进行模型训练和分类。
以下是一个简单的声纹识别代码示例:
```python
import librosa
import numpy as np
from sklearn import svm
# 加载音频文件
def load_audio_file(file_path):
audio_data, _ = librosa.load(file_path, sr=8000)
return audio_data
# 提取声纹特征
def extract_feature(audio_data):
stft = np.abs(librosa.stft(audio_data))
mfccs = np.mean(librosa.feature.mfcc(y=audio_data, sr=8000, n_mfcc=40).T, axis=0)
chroma = np.mean(librosa.feature.chroma_stft(S=stft, sr=8000).T, axis=0)
mel = np.mean(librosa.feature.melspectrogram(audio_data, sr=8000).T, axis=0)
contrast = np.mean(librosa.feature.spectral_contrast(S=stft, sr=8000).T, axis=0)
tonnetz = np.mean(librosa.feature.tonnetz(y=librosa.effects.harmonic(audio_data), sr=8000).T, axis=0)
return np.hstack([mfccs, chroma, mel, contrast, tonnetz])
# 训练模型
def train_model(features, labels):
model = svm.SVC(kernel='linear', C=1, gamma=1)
model.fit(features, labels)
return model
# 测试音频文件
def predict(file_path, model):
audio_data = load_audio_file(file_path)
feature = extract_feature(audio_data)
label = model.predict([feature])
return label
# 训练集和标签
features = np.empty((0, 193))
labels = np.empty(0)
for i in range(1, 5):
file_name = "speaker" + str(i) + ".wav"
file_path = "data/" + file_name
audio_data = load_audio_file(file_path)
feature = extract_feature(audio_data)
features = np.vstack([features, feature])
labels = np.append(labels, i)
# 训练模型
model = train_model(features, labels)
# 测试音频文件
test_file_path = "test/speaker1.wav"
predicted_label = predict(test_file_path, model)
print("Predicted speaker:", predicted_label)
# 相关问题:
1. 声纹识别是什么?
2. Python中有哪些常用的声纹识别库?
3. 声纹识别的流程是什么?
阅读全文