声纹识别python代码
时间: 2023-10-08 14:14:11 浏览: 329
当然,我可以为您提供一些声纹识别的 Python 代码示例。在这个例子中,我们将使用librosa库来提取声音特征,并使用sklearn库中的支持向量机(SVM)来训练模型进行声纹识别。以下是一个简单的代码示例:
```python
import numpy as np
import librosa
from sklearn import svm
# 提取声音特征
def extract_features(file_path):
audio, sample_rate = librosa.load(file_path, res_type='kaiser_fast')
mfccs_features = librosa.feature.mfcc(y=audio, sr=sample_rate, n_mfcc=40)
return mfccs_features
# 构建训练集和标签
def create_train_data():
train_data = []
labels = []
# 正样本
for i in range(1, 11):
file_path = f"path/to/positive_samples/positive{i}.wav"
features = extract_features(file_path)
train_data.append(features)
labels.append(1)
# 负样本
for i in range(1, 11):
file_path = f"path/to/negative_samples/negative{i}.wav"
features = extract_features(file_path)
train_data.append(features)
labels.append(0)
return train_data, labels
# 训练模型
def train_model(train_data, labels):
train_data = np.concatenate(train_data)
train_data = np.reshape(train_data, (len(train_data), -1))
model = svm.SVC(kernel='linear')
model.fit(train_data, labels)
return model
# 测试声纹识别
def test_voice(file_path, model):
features = extract_features(file_path)
features = np.reshape(features, (1, -1))
result = model.predict(features)
if result == 1:
print("声音与训练集中的正样本匹配")
else:
print("声音与训练集中的负样本不匹配")
# 创建训练数据集
train_data, labels = create_train_data()
# 训练模型
model = train_model(train_data, labels)
# 测试声纹识别
test_voice("path/to/test_voice.wav", model)
```
请注意,这只是一个简单的示例,实际的声纹识别系统可能会使用更复杂的特征提取和分类算法。此外,您需要替换示例代码中的文件路径和样本文件名。希望对您有所帮助!
阅读全文