torch 批处理矩阵乘法
时间: 2023-08-16 11:06:55 浏览: 126
genbmm:在PyTorch中用于通用矩阵乘法的CUDA内核
在PyTorch中,可以使用torch.mm函数进行批处理矩阵乘法。根据官方文档,torch.mm函数是用来计算两个2-D矩阵的矩阵乘法。如果input是一个n×m张量,mat2是一个m×p张量,将会输出一个n×p张量。例如,如果有两个矩阵mat1和mat2,可以使用torch.mm(mat1, mat2)来进行矩阵乘法运算。
另外,如果你需要进行批处理矩阵乘法,可以使用torch.bmm函数。该函数接受两个3-D张量作为输入,其中第一个张量的维度是(batch_size, n, m),第二个张量的维度是(batch_size, m, p),输出的维度是(batch_size, n, p)。这样可以同时对多个批次的矩阵进行乘法运算。在PyTorch官方文档中可以找到更多关于torch.bmm函数的详细信息。
因此,如果你需要进行批处理矩阵乘法,可以使用torch.bmm函数。如果只是对两个2-D矩阵进行乘法运算,可以使用torch.mm函数。<span class="em">1</span><span class="em">2</span><span class="em">3</span>
#### 引用[.reference_title]
- *1* [torch中乘法整理,*&torch.mul()&torch.mv()&torch.mm()&torch.dot()&@&torch.mutmal()](https://blog.csdn.net/weixin_45640609/article/details/125979352)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT0_1"}}] [.reference_item style="max-width: 33.333333333333336%"]
- *2* [pytorch 中矩阵乘法总结](https://blog.csdn.net/a841454735/article/details/117916532)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT0_1"}}] [.reference_item style="max-width: 33.333333333333336%"]
- *3* [pytoch矩阵乘法torch.bmm](https://blog.csdn.net/weixin_34910922/article/details/122182237)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT0_1"}}] [.reference_item style="max-width: 33.333333333333336%"]
[ .reference_list ]
阅读全文