vae实现cifar数据生成,并且在训练中评估模型性能,torch代码
时间: 2024-09-25 18:11:37 浏览: 40
在PyTorch中,我们可以使用Variational Autoencoder (VAE) 来生成CIFAR-10等图像数据集。VAE是一种生成式模型,通过学习数据的潜在分布来进行样本生成。以下是使用PyTorch实现的基本步骤:
首先,你需要安装必要的库:
```bash
pip install torch torchvision numpy
```
接下来是一个简化的VAE模型实现以及训练过程示例:
```python
import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms
# 数据预处理
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
dataset = datasets.CIFAR10(root='./data', train=True, download=True, transform=transform)
dataloader = torch.utils.data.DataLoader(dataset, batch_size=32, shuffle=True)
# VAE模型结构
class VAE(nn.Module):
def __init__(self):
super(VAE, self).__init__()
# 编码层
self.encoder = nn.Sequential(
nn.Linear(3*32*32, 400),
nn.ReLU(True),
nn.Linear(400, 200),
nn.ReLU(True),
nn.Linear(200, latent_dim)
)
# 隐藏层和解码层
self.hidden = nn.Linear(latent_dim, 400)
self.decoder_mean = nn.Linear(400, 3*32*32)
self.decoder_logvar = nn.Linear(400, 3*32*32)
def reparameterize(self, mu, logvar):
std = torch.exp(0.5 * logvar)
eps = torch.randn_like(std)
return mu + eps * std
def forward(self, x):
h = self.encoder(x.view(-1, 3*32*32))
z_mu = self.hidden(h)
z_logvar = self.decoder_logvar(z_mu)
z = self.reparameterize(z_mu, z_logvar)
decoder_input = self.decoder_hidden(z)
x_recon = self.decoder_mean(decoder_input)
return x_recon, z_mu, z_logvar
latent_dim = 10 # 潜在变量维度
model = VAE()
optimizer = optim.Adam(model.parameters(), lr=1e-3)
loss_fn = nn.MSELoss()
def train(epoch):
model.train()
for i, (images, _) in enumerate(dataloader):
images = images.to(device)
recon_batch, mu, logvar = model(images)
loss_recon = loss_fn(recon_batch, images)
kld_loss = -0.5 * torch.sum(1 + logvar - mu.pow(2) - logvar.exp())
loss = loss_recon + kld_loss
optimizer.zero_grad()
loss.backward()
optimizer.step()
if (i+1) % 100 == 0:
print(f"Epoch [{epoch+1}/{epochs}], Step {i+1}/{len(dataloader)}, Loss: {loss.item():.4f}")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
for epoch in range(num_epochs): # 运行多轮训练
train(epoch)
# 生成新样本
with torch.no_grad():
random_latent = torch.randn(latent_dim).to(device)
generated_image = model.decode(random_latent).cpu().numpy()
# 可视化生成的图像
plt.imshow(generated_image.reshape(32, 32, 3), cmap='gray')
plt.show()
```
在这个例子中,我们先加载CIFAR-10数据,然后定义一个简单的VAE模型,包含编码器、隐藏层、和解码器。在训练过程中,我们计算重建损失和KL散度,优化模型。最后,我们可以在训练结束后生成新的图像。
阅读全文