x.grad.zero_() y = x.sum() y.backward() print(x.grad)
时间: 2024-06-15 11:03:48 浏览: 106
x.grad.zero_()是PyTorch中的一个方法,用于将张量x的梯度值归零。这个方法通常在每次进行反向传播之前调用,以确保梯度不会累积。
y = x.sum()是一个计算张量x所有元素之和的操作。
y.backward()是PyTorch中的一个方法,用于计算y相对于x的梯度。它会自动计算并存储梯度值在x.grad中。
print(x.grad)会打印出张量x的梯度值。
相关问题
for _epoch in range(epoch): model.train() for idx, (train_x, train_label) in enumerate(train_loader): label_np = np.zeros((train_label.shape[0], 10)) sgd.zero_grad() predict_y = model(train_x.float()) loss = cost(predict_y, train_label.long()) if idx % 10 == 0: print('idx: {}, loss: {}'.format(idx, loss.sum().item())) loss.backward() sgd.step() correct = 0 _sum = 0 model.eval() for idx, (test_x, test_label) in enumerate(test_loader): predict_y = model(test_x.float()).detach() predict_ys = np.argmax(predict_y, axis=-1) label_np = test_label.numpy() _ = predict_ys == test_label correct += np.sum(_.numpy(), axis=-1) _sum += _.shape[0] print('accuracy: {:.2f}'.format(correct / _sum)) torch.save(model, 'models/mnist_{:.2f}.pkl'.format(correct / _sum))
这代码是一个简单的训练循环,用于训练一个模型来进行手写数字识别。下面是对代码的解释:
1. 首先,你使用一个外部变量 `epoch` 来指定训练的轮数。
2. 在每个训练轮数中,你调用 `model.train()` 来设置模型为训练模式。
3. 然后,通过迭代 `train_loader` 来获取训练数据和对应的标签,使用 `sgd.zero_grad()` 来清除之前的梯度信息。
4. 接下来,你使用模型对训练数据进行前向传播,得到预测结果 `predict_y`。
5. 通过计算预测结果和真实标签之间的损失,使用 `cost(predict_y, train_label.long())` 来计算损失值。
6. 如果 `idx` 可以被 10 整除,你会打印当前的损失值。
7. 通过调用 `loss.backward()` 来计算梯度,并使用 `sgd.step()` 来更新模型的参数。
8. 在每个训练轮数结束后,你使用 `model.eval()` 将模型设置为评估模式。
9. 然后,通过迭代 `test_loader` 来获取测试数据和对应的标签,使用模型进行前向传播得到预测结果 `predict_y`。
10. 通过比较预测结果和真实标签,计算出准确率。
11. 最后,你会将模型保存到文件中,文件名中包含了当前的准确率。
请注意,这段代码中使用了一些外部的函数和变量,例如 `epoch`、`train_loader`、`test_loader`、`model`、`cost`、`sgd` 等。你需要确保在运行这段代码之前,这些函数和变量已经定义和初始化好了。
from model import Model import numpy as np import torch from torchvision.datasets import mnist from torch.nn import CrossEntropyLoss from torch.optim import SGD from torch.utils.data import DataLoader from torchvision.transforms import ToTensor if __name__ == '__main__': batch_size = 256 train_dataset = mnist.MNIST(root='./train', train=True, transform=ToTensor()) test_dataset = mnist.MNIST(root='./test', train=False, transform=ToTensor()) train_loader = DataLoader(train_dataset, batch_size=batch_size) test_loader = DataLoader(test_dataset, batch_size=batch_size) model = Model() sgd = SGD(model.parameters(), lr=1e-1) cost = CrossEntropyLoss() epoch = 100 for _epoch in range(epoch): model.train() for idx, (train_x, train_label) in enumerate(train_loader): label_np = np.zeros((train_label.shape[0], 10)) sgd.zero_grad() predict_y = model(train_x.float()) loss = cost(predict_y, train_label.long()) if idx % 10 == 0: print('idx: {}, loss: {}'.format(idx, loss.sum().item())) loss.backward() sgd.step() correct = 0 _sum = 0 model.eval() for idx, (test_x, test_label) in enumerate(test_loader): predict_y = model(test_x.float()).detach() predict_ys = np.argmax(predict_y, axis=-1) label_np = test_label.numpy() _ = predict_ys == test_label correct += np.sum(_.numpy(), axis=-1) _sum += _.shape[0] print('accuracy: {:.2f}'.format(correct / _sum)) torch.save(model, 'models/mnist_{:.2f}.pkl'.format(correct / _sum))
这段代码是一个简单的使用PyTorch训练MNIST数据集的示例代码。它包括了模型的定义、数据加载、训练和测试的过程。
首先,它导入了所需的库和模块,包括了模型定义(`Model`)、数据集(`mnist`)、数据加载器(`DataLoader`)、损失函数(`CrossEntropyLoss`)、优化器(`SGD`)以及数据转换(`ToTensor`)。
然后,在`if __name__ == '__main__':`的条件下,定义了一些训练所需的参数,如批量大小(`batch_size`)、训练集和测试集的数据加载器(`train_loader`和`test_loader`)。接着,创建了一个模型实例(`model`)和优化器实例(`sgd`),以及定义了损失函数(`cost`)和训练的轮数(`epoch`)。
接下来,通过一个循环迭代训练数据集的每个批次。在每个批次中,将模型设置为训练模式(`model.train()`),将优化器的梯度置零(`sgd.zero_grad()`),通过模型前向传播得到预测结果(`predict_y`),计算损失(`loss`),并进行反向传播和参数更新(`loss.backward()`和`sgd.step()`)。同时,每训练10个批次,打印出当前的损失值。
接着,通过另一个循环对测试集进行预测,并计算准确率。在每个测试批次中,将模型设置为评估模式(`model.eval()`),通过模型前向传播得到预测结果(`predict_y`),将预测结果转换为类别标签(`predict_ys`),并与真实标签进行比较,统计正确预测的数量(`correct`)和总样本数量(`_sum`)。最后,计算并打印出准确率。
最后,将训练好的模型保存到文件中,文件名中包含了准确率。
这段代码的作用是训练一个简单的模型来分类MNIST手写数字数据集,并保存训练好的模型。
阅读全文