and insured_name REGEXP '[/u4e00-/u9fa5]'这段sql的含义,如何修改正确
时间: 2024-09-19 22:05:15 浏览: 60
这段SQL语句使用了正则表达式`[/u4e00-/u9fa5]`,在MySQL中,`REGEXP`用于文本搜索,这里的含义是查找`insured_name`列中包含中文字符(Unicode编码范围从U+4E00到U+9FA5,这是汉字的常用编码区间)的记录。`/u4e00-/u9fa5`是一个字符集,表示匹配所有这个范围内的字符。
如果你想修改成只选择完全由中文字符组成的`insured_name`,你需要做如下调整:
```sql
SELECT * FROM table
WHERE insured_name REGEXP '^[\u4e00-\u9fa5]+$'
```
这里,`^` 表示字符串的开始,`[\u4e00-\u9fa5]+` 匹配一串连续的中文字符,`$` 表示字符串的结束。这样就只会返回那些全由中文组成,而且没有任何其他字符的`insured_name`。
如果你想要区分大小写,可以改为:
```sql
SELECT * FROM table
WHERE insured_name REGEXP BINARY '^[\u4e00-\u9fa5]+$'
```
这里加上`BINARY`是为了确保字符比较时不考虑字符的内部排序顺序。
相关问题
count(policy_no), count(sub_policy_no), count(insured_type), count(insured_name), count(insured_document_type), count(insured_document_no), count(insured_employee_number), count(insured_birthday), count(insured_sex), count(contact_number), count(contact_address), count(email), count(relationto_applicant), count(relationto_insured), count(main_insured_sign), count(edor_no), count(insurance_time), count(effective_date), count(expiration_date), count(insurance_premium), count(scheme_code), count(scheme_name), count(sub_policy_status), count(surrender_time), count(company_account), count(division_code), count(division_name), count(network_code), count(network_name), count(validity_flag), count(del_flag), count(create_by), count(update_by), count(create_date), count(update_date), count(remarks), count(source_system), count(all_insurance_time), count(all_effective_date), count(all_expiration_date), count(company_code), count(company_name), count(protocol_code), count(protocol_name), count(channel_code), count(channel_name), count(product_code), count(product_name), count(all_insurance_premium), count(sales_code), count(sales_name), count(project_code), count(project_name), count(transaction_source), count(policy_type), count(policy_nature), count(policy_status), count(payment_method), count(paymen_period), count(brokerage_rate), count(technical_service_rate), count(payment_type), count(all_surrender_time), count(applicant_type), count(applicant_name), count(applicant_document_type), count(applicant_document_no), count(member_id), count(applicant_birthday), count(applicant_sex), count(applicant_contact_number), count(applicant_contact_address), count(applicant_email), count(total_insurance_day_cnt), count(cur_insurance_day_cnt), count(cur_insurance_amt), count(product_category_name), count(product_subclass_name), count(product_policy_year), count(project_type_name),
根据你提供的字段列表,我猜测你想提取这些字段的数量。如果是这样的话,你可以使用以下 SQL 查询语句来提取这些字段的数量:
```sql
SELECT
COUNT(policy_no),
COUNT(sub_policy_no),
COUNT(insured_type),
COUNT(insured_name),
COUNT(insured_document_type),
COUNT(insured_document_no),
COUNT(insured_employee_number),
COUNT(insured_birthday),
COUNT(insured_sex),
COUNT(contact_number),
COUNT(contact_address),
COUNT(email),
COUNT(relationto_applicant),
COUNT(relationto_insured),
COUNT(main_insured_sign),
COUNT(edor_no),
COUNT(insurance_time),
COUNT(effective_date),
COUNT(expiration_date),
COUNT(insurance_premium),
COUNT(scheme_code),
COUNT(scheme_name),
COUNT(sub_policy_status),
COUNT(surrender_time),
COUNT(company_account),
COUNT(division_code),
COUNT(division_name),
COUNT(network_code),
COUNT(network_name),
COUNT(validity_flag),
COUNT(del_flag),
COUNT(create_by),
COUNT(update_by),
COUNT(create_date),
COUNT(update_date),
COUNT(remarks),
COUNT(source_system),
COUNT(all_insurance_time),
COUNT(all_effective_date),
COUNT(all_expiration_date),
COUNT(company_code),
COUNT(company_name),
COUNT(protocol_code),
COUNT(protocol_name),
COUNT(channel_code),
COUNT(channel_name),
COUNT(product_code),
COUNT(product_name),
COUNT(all_insurance_premium),
COUNT(sales_code),
COUNT(sales_name),
COUNT(project_code),
COUNT(project_name),
COUNT(transaction_source),
COUNT(policy_type),
COUNT(policy_nature),
COUNT(policy_status),
COUNT(payment_method),
COUNT(paymen_period),
COUNT(brokerage_rate),
COUNT(technical_service_rate),
COUNT(payment_type),
COUNT(all_surrender_time),
COUNT(applicant_type),
COUNT(applicant_name),
COUNT(applicant_document_type),
COUNT(applicant_document_no),
COUNT(member_id),
COUNT(applicant_birthday),
COUNT(applicant_sex),
COUNT(applicant_contact_number),
COUNT(applicant_contact_address),
COUNT(applicant_email),
COUNT(total_insurance_day_cnt),
COUNT(cur_insurance_day_cnt),
COUNT(cur_insurance_amt),
COUNT(product_category_name),
COUNT(product_subclass_name),
COUNT(product_policy_year),
COUNT(project_type_name)
FROM your_table_name;
```
请将 `your_table_name` 替换为你想要查询的表的名称。这将返回一个包含每个字段数量的行。
train_df[['insured_occupation','insured_hobbies','age']].groupby(['insured_occupation','insured_hobbies']).mean().reset_index(drop=False) 是什么意思
这是一个 Pandas 的数据分组操作。该语句对 `train_df` 数据集中的 `insured_occupation`、`insured_hobbies` 和 `age` 列进行了分组,并计算同一组内 `age` 列的平均值。最后,通过 `reset_index()` 函数将分组后的结果重置索引,并将 `insured_occupation` 和 `insured_hobbies` 列从索引中移回到数据集中。
具体来说,该语句的操作步骤如下:
1. 选取 `train_df` 数据集中的 `insured_occupation`、`insured_hobbies` 和 `age` 列。
2. 将数据集按照 `insured_occupation` 和 `insured_hobbies` 列进行分组。
3. 对于每个分组,计算 `age` 列的平均值。
4. 将分组后的结果重置索引,并将 `insured_occupation` 和 `insured_hobbies` 列从索引中移回到数据集中。
最终的输出结果是一个 DataFrame,其中包含三列:`insured_occupation`、`insured_hobbies` 和 `age` 的平均值。
阅读全文