easyensemble算法的完整实现python代码
时间: 2024-02-07 22:02:32 浏览: 116
Sure, here's an example of how you can implement the EasyEnsemble algorithm using Python:
```python
from sklearn.base import BaseEstimator, ClassifierMixin
from sklearn.utils import check_X_y, check_random_state
from sklearn.tree import DecisionTreeClassifier
from sklearn.utils import resample
from sklearn.metrics import accuracy_score
class EasyEnsemble(BaseEstimator, ClassifierMixin):
def __init__(self, base_estimator=None, n_estimators=10, random_state=None):
self.base_estimator = base_estimator or DecisionTreeClassifier()
self.n_estimators = n_estimators
self.random_state = random_state
def fit(self, X, y):
X, y = check_X_y(X, y)
self.estimators_ = []
self.estimators_weights_ = []
random_state = check_random_state(self.random_state)
for _ in range(self.n_estimators):
X_resampled, y_resampled = resample(X, y, random_state=random_state)
estimator = self.base_estimator.fit(X_resampled, y_resampled)
self.estimators_.append(estimator)
self.estimators_weights_.append(1.0)
return self
def predict(self, X):
predictions = []
for estimator in self.estimators_:
predictions.append(estimator.predict(X))
return self._majority_vote(predictions)
def _majority_vote(self, predictions):
return [self._mode(p) for p in zip(*predictions)]
def _mode(self, lst):
return max(set(lst), key=lst.count)
# Example usage:
from sklearn.datasets import make_classification
from sklearn.model_selection import train_test_split
# Generate a synthetic dataset
X, y = make_classification(n_samples=1000, n_features=10, random_state=42)
# Split the dataset into train and test sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# Create an instance of the EasyEnsemble classifier
ee = EasyEnsemble(n_estimators=10)
# Fit the EasyEnsemble classifier on the training data
ee.fit(X_train, y_train)
# Make predictions on the test data
y_pred = ee.predict(X_test)
# Calculate the accuracy of the predictions
accuracy = accuracy_score(y_test, y_pred)
print("Accuracy:", accuracy)
```
This code defines a custom `EasyEnsemble` class that inherits from `BaseEstimator` and `ClassifierMixin` from scikit-learn. It uses a base estimator (default is `DecisionTreeClassifier`) to create an ensemble of classifiers using resampled subsets of the training data. The predictions are made by majority voting of the predictions from each individual classifier in the ensemble.
阅读全文