roslaunch turn_on_mercury_robot mapping.launch
时间: 2024-08-14 20:05:19 浏览: 59
"roslaunch"是ROS(机器人操作系统)中的一个工具,用于启动和配置ROS包中的launch文件。launch文件通常包含一组ROS包和它们的参数,用于启动和配置它们。
"turn_on_mercury_robot"是一个特定的launch文件,用于启动名为"Mercury"的机器人。这可能涉及到加载机器人的节点,配置通信参数,设置机器人运动状态等。
"mapping.launch"是另一个launch文件,通常用于机器人地图创建。它可能包含一些ROS地图创建节点,用于从机器人传感器数据中生成地图,并将其保存到ROS图数据库中。
所以,"roslaunch turn_on_mercury_robot mapping.launch"的意思是使用roslaunch工具启动名为"turn_on_mercury_robot"的launch文件,该文件配置了Mercury机器人及其相关参数,然后使用另一个launch文件"mapping.launch"来创建并配置地图。具体的行为将取决于"turn_on_mercury_robot"和"mapping.launch"文件的具体内容。
相关问题
from transformers import BertTokenizer, BertForQuestionAnswering import torch # 加载BERT模型和分词器 model_name = 'bert-base-uncased' tokenizer = BertTokenizer.from_pretrained(model_name) model = BertForQuestionAnswering.from_pretrained(model_name) # 输入文本和问题 context = "The Apollo program, also known as Project Apollo, was the third United States human spaceflight program carried out by the National Aeronautics and Space Administration (NASA), which succeeded in landing the first humans on the Moon from 1969 to 1972. Apollo was first conceived during the Eisenhower administration in early 1960 as a follow-up to Project Mercury. It was dedicated to President John F. Kennedy's national goal of landing Americans on the Moon before the end of the 1960s." question = "What was the goal of the Apollo program?" # 对输入进行编码 encoding = tokenizer.encode_plus(question, context, max_length=512, padding='max_length', truncation=True, return_tensors='pt') # 获取输入ids和注意力掩码 input_ids = encoding['input_ids'] attention_mask = encoding['attention_mask'] # 使用BERT模型进行问答 outputs = model(input_ids=input_ids, attention_mask=attention_mask) start_scores = outputs.start_logits end_scores = outputs.end_logits # 获取答案的起始和结束位置 start_index = torch.argmax(start_scores) end_index = torch.argmax(end_scores) # 解码答案 answer = tokenizer.convert_tokens_to_string(tokenizer.convert_ids_to_tokens(input_ids[0][start_index:end_index+1])) print(answer)
运行这段代码时,你加载了预训练的 BERT 模型和分词器,并对文本和问题进行了编码。然后,你使用 BERT 模型进行问答,通过输入输入ids和注意力掩码,模型输出了起始和结束位置的得分。接着,通过找到得分最高的位置,你解码出了答案,并将其打印出来。
请注意,这段代码还需要安装 Transformers 库和 PyTorch 库,并确保已经下载了预训练的 BERT 模型。
class Question: def __init__(self, stem, options, answer): self.stem = stem self.options = options self.answer = answerclass QuestionBank: def __init__(self): self.questions = [] def add_question(self, question): self.questions.append(question) def remove_question(self, question): self.questions.remove(question) def get_random_questions(self, num): return random.sample(self.questions, num)class Paper: def __init__(self, questions): self.questions = questions self.answers = {} def answer_question(self, question, answer): self.answers[question] = answer def get_score(self): score = 0 for question, answer in self.answers.items(): if answer == question.answer: score += 1 return scoreclass Grader: def __init__(self, paper): self.paper = paper def grade(self): return self.paper.get_score()# Example usagequestion1 = Question("What is the capital of France?", ["Paris", "London", "Berlin", "Madrid"], "Paris")question2 = Question("What is the largest planet in the solar system?", ["Mercury", "Venus", "Earth", "Jupiter"], "Jupiter")question3 = Question("What is the highest mountain in the world?", ["K2", "Mount Everest", "Makalu", "Cho Oyu"], "Mount Everest")question_bank = QuestionBank()question_bank.add_question(question1)question_bank.add_question(question2)question_bank.add_question(question3)paper = Paper(question_bank.get_random_questions(2))paper.answer_question(question1, "Paris")paper.answer_question(question2, "Jupiter")grader = Grader(paper)score = grader.grade()print("Your score is:", score)将这个代码转为C++的
好的,以下是将 Python 代码转换为 C++ 代码的示例:
```cpp
#include <iostream>
#include <vector>
#include <map>
#include <string>
#include <algorithm>
#include <random>
using namespace std;
class Question {
public:
string stem;
vector<string> options;
string answer;
Question(string s, vector<string> o, string a) {
stem = s;
options = o;
answer = a;
}
};
class QuestionBank {
public:
vector<Question> questions;
void add_question(Question q) {
questions.push_back(q);
}
void remove_question(Question q) {
questions.erase(remove(questions.begin(), questions.end(), q), questions.end());
}
vector<Question> get_random_questions(int num) {
vector<Question> res;
random_device rd;
mt19937 gen(rd());
shuffle(questions.begin(), questions.end(), gen);
for (int i = 0; i < num; ++i) {
res.push_back(questions[i]);
}
return res;
}
};
class Paper {
public:
vector<Question> questions;
map<Question, string> answers;
Paper(vector<Question> q) {
questions = q;
}
void answer_question(Question q, string a) {
answers[q] = a;
}
int get_score() {
int score = 0;
for (auto const& x : answers) {
if (x.second == x.first.answer) {
score++;
}
}
return score;
}
};
class Grader {
public:
Paper paper;
Grader(Paper p) {
paper = p;
}
int grade() {
return paper.get_score();
}
};
int main() {
Question question1("What is the capital of France?", {"Paris", "London", "Berlin", "Madrid"}, "Paris");
Question question2("What is the largest planet in the solar system?", {"Mercury", "Venus", "Earth", "Jupiter"}, "Jupiter");
Question question3("What is the highest mountain in the world?", {"K2", "Mount Everest", "Makalu", "Cho Oyu"}, "Mount Everest");
QuestionBank question_bank;
question_bank.add_question(question1);
question_bank.add_question(question2);
question_bank.add_question(question3);
vector<Question> random_questions = question_bank.get_random_questions(2);
Paper paper(random_questions);
paper.answer_question(question1, "Paris");
paper.answer_question(question2, "Jupiter");
Grader grader(paper);
int score = grader.grade();
cout << "Your score is: " << score << endl;
return 0;
}
```
注意,这只是一个简单的示例,实际情况下可能需要更多的代码来处理错误处理、用户输入等问题。
阅读全文