Matlab% 太阳系模拟 G = 6.67430e-11; % 万有引力常数 M_sun = 1.989e30; % 太阳质量 M_mercury = 3.3e23; % 水星质量 M_venus = 4.87e24; % 金星质量 M_earth = 5.97e24; % 地球质量 M_mars = 6.39e23; % 火星质量 M_jupiter = 1.898e27; % 木星质量 M_saturn = 5.68e26; % 土星质量 M_uranus = 8.68e25; % 天王星质量 M_neptune = 1.02e26; % 海王星质量 M_pluto = 1.31e22; % 冥王星质量 % 初始位置和速度 P_sun = [0; 0; 0]; P_mercury = [0; 5.7e10; 0]; P_venus = [0; 1.1e11; 0]; P_earth = [0; 1.5e11; 0]; P_mars = [0; 2.2e11; 0]; P_jupiter = [0; 7.8e11; 0]; P_saturn = [0; 1.4e12; 0]; P_uranus = [0; 2.9e12; 0]; P_neptune = [0; 4.5e12; 0]; P_pluto = [0; 5.9e12; 0]; V_sun = [0; 0; 0]; V_mercury = [4.8e4; 0; 0]; V_venus = [3.5e4; 0; 0]; V_earth = [2.98e4; 0; 0]; V_mars = [2.41e4; 0; 0]; V_jupiter = [1.3e4; 0; 0]; V_saturn = [9.7e3; 0; 0]; V_uranus = [6.8e3; 0; 0]; V_neptune = [5.4e3; 0; 0]; V_pluto = [4.7e3; 0; 0]; % 模拟时间和时间步长 t = 0:3600*24*365:3600*24*365*10; dt = 3600*24; % 数值积分 P = [P_sun, P_mercury, P_venus, P_earth, P_mars, P_jupiter, P_saturn, P_uranus, P_neptune, P_pluto]; V = [V_sun, V_mercury, V_venus, V_earth, V_mars, V_jupiter, V_saturn, V_uranus, V_neptune, V_pluto]; M = [M_sun, M_mercury, M_venus, M_earth, M_mars, M_jupiter, M_saturn, M_uranus, M_neptune, M_pluto]; for i = 1:length(t)-1 F = zeros(3, size(P, 2)); for j = 1:size(P, 2) for k = 1:size(P, 2) if j ~= k r = norm(P(:,j)-P(:,k)); F(:,j) = F(:,j) + G*M(j)*M(k)/r^2*(P(:,k)-P(:,j))/r; end end end A = F./M; V = V + A*dt; P = P + V*dt; end % 绘制行星轨道 figure; hold on; plot3(P(1,:), P(2,:), P(3,:), 'k'); grid on; axis equal; view(45, 45); 代码报错 错误使用:./ 2.矩阵维度必须一致

时间: 2023-12-10 07:39:02 浏览: 231
RAR

MES-HSMS-FastSim-飞信测试工具,SEMI E37,E30,E5

这个错误通常是由于矩阵的维度不匹配导致的。在这个代码中,错误可能出现在以下几行: ``` F = zeros(3, size(P, 2)); ... A = F./M; ``` 这里的 `size(P, 2)` 表示矩阵 `P` 的第二个维度的大小,也就是行星数量。因此,`F` 的第二个维度大小应该和行星数量相同。而 `M` 是行星质量的向量,它的大小应该和行星数量相同。如果这两个向量的大小不同,那么在进行除法运算时就会出现维度不匹配的错误。 你可以通过在这些语句之前添加 `disp` 语句来检查这些变量的大小: ``` disp(size(P, 2)); disp(size(M)); ``` 这样就可以找到错误所在,并修复代码。
阅读全文

相关推荐

% 定义常数 G = 6.67e-11; % 万有引力常数 M_sun = 1.989e30; % 太阳质量 M_earth = 5.972e24; % 地球质量 M_moon = 7.342e22; % 月球质量 D_es = 1.49598e11; % 地-太距离 D_ms = 3.844e8; % 月-太距离 % 初始位置和速度 x_earth = [D_es, 0]; % 地球初始位置 x_moon = [D_es+D_ms, 0]; % 月球初始位置 v_earth = [0, 29.78e3]; % 地球初始速度 v_moon = [0, (29.78e3+1022)]; % 月球初始速度 % 时间间隔和步长 t_start = 0; t_end = 365*24*3600;% 一年的时间 dt = 3600; % 时间步长 % 初始化变量 x = [x_earth,x_moon,v_earth,v_moon]; t = t_start; % 循环计算并绘图 figure while t < t_end % 计算下一个时间步长的位置 x = euler_step(@three_body, x, t, dt); t = t + dt; % 画出地球和月球的位置 subplot(1,2,1) plot(x(1), x(2), 'bo', 'MarkerSize', 10, 'MarkerFaceColor', 'b'); hold on; plot(x(3), x(4), 'ro', 'MarkerSize', 5, 'MarkerFaceColor', 'r'); xlim([-D_es*1.5, D_es*1.5]); ylim([-D_es*1.5, D_es*1.5]); xlabel('x (m)'); ylabel('y (m)'); title(['Three-body simulation (t=',num2str(t/(24*3600),'%.2f'),' days)']); subplot(1,2,2) plot(x(3)-x(1), x(4)-x(2), 'ro', 'MarkerSize', 10, 'MarkerFaceColor', 'b'); hold on axis([-D_ms*3 D_ms*3 -D_ms*3 D_ms*3]) drawnow; end % 定义欧拉方法函数 function x_next = euler_step(f, x, t, dt) x_next = x + dt*f(x, t); end % 定义微分方程函数 function dx_dt = three_body(x,t) G = 6.67e-11; M_sun = 1.989e30; M_earth = 5.972e24; M_moon = 7.342e22; D_es = 1.49598e11; D_ms = 3.844e8; x_earth = x(1:2); x_moon = x(3:4); v_earth = x(5:6); v_moon = x(7:8); % 地球受到的引力 F_es = G*M_sun*M_earth/norm(x_earth)^2; % 月球受到的引力 F_ms = G*M_sun*M_moon/norm(x_moon)^2; % 地球和月球之间的引力 F_em = G*M_earth*M_moon/norm(x_earth-x_moon)^2; % 地球和月球的加速度 a_earth = -F_es/M_earth*(x_earth/norm(x_earth)) - F_em/M_earth*((x_earth-x_moon)/norm(x_earth-x_moon)); a_moon = -F_ms/M_moon*(x_moon/norm(x_moon)) + F_em/M_moon*((x_earth-x_moon)/norm(x_earth-x_moon)); dx_dt = [v_earth, v_moon, a_earth, a_moon]; end该程序中地球和月球的初始位置和初始速度分别为多少

修改这个matlab函数,使得输出太阳月亮和地球的位置信息:function [x, y] = simulateSolarSystem(T, dt) % T: 模拟总时间 % dt: 模拟时间步长 % 天体初始位置和速度 sunPos = [0, 0]; sunVel = [0, 0]; moonPos = [384400000, 0]; moonVel = [0, 1022]; earthPos = [149600000, 0]; earthVel = [0, 29783]; % 天体质量 sunMass = 1.989e30; moonMass = 7.342e22; earthMass = 5.972e24; % 模拟步数 numSteps = ceil(T / dt); % 初始化位置和速度数组 sunX = zeros(numSteps, 1); sunY = zeros(numSteps, 1); moonX = zeros(numSteps, 1); moonY = zeros(numSteps, 1); earthX = zeros(numSteps, 1); earthY = zeros(numSteps, 1); % 模拟循环 for i = 1:numSteps % 计算太阳、月亮和地球的加速度 sunAcc = -sunPos * sunMass / norm(sunPos)^3; moonAcc = (-moonPos * moonMass / norm(moonPos)^3) + (sunPos - moonPos) * sunMass / norm(sunPos - moonPos)^3; earthAcc = (-earthPos * earthMass / norm(earthPos)^3) + (sunPos - earthPos) * sunMass / norm(sunPos - earthPos)^3 + (moonPos - earthPos) * moonMass / norm(moonPos - earthPos)^3; % 利用欧拉法更新位置和速度 sunPos = sunPos + sunVel * dt; sunVel = sunVel + sunAcc * dt; moonPos = moonPos + moonVel * dt; moonVel = moonVel + moonAcc * dt; earthPos = earthPos + earthVel * dt; earthVel = earthVel + earthAcc * dt; % 保存位置信息 sunX(i) = sunPos(1); sunY(i) = sunPos(2); moonX(i) = moonPos(1); moonY(i) = moonPos(2); earthX(i) = earthPos(1); earthY(i) = earthPos(2); end % 返回位置信息 x = [sunX, moonX, earthX]; y = [sunY, moonY, earthY]; end

最新推荐

recommend-type

YOLO算法-城市电杆数据集-496张图像带标签-电杆.zip

YOLO系列算法目标检测数据集,包含标签,可以直接训练模型和验证测试,数据集已经划分好,包含数据集配置文件data.yaml,适用yolov5,yolov8,yolov9,yolov7,yolov10,yolo11算法; 包含两种标签格:yolo格式(txt文件)和voc格式(xml文件),分别保存在两个文件夹中,文件名末尾是部分类别名称; yolo格式:<class> <x_center> <y_center> <width> <height>, 其中: <class> 是目标的类别索引(从0开始)。 <x_center> 和 <y_center> 是目标框中心点的x和y坐标,这些坐标是相对于图像宽度和高度的比例值,范围在0到1之间。 <width> 和 <height> 是目标框的宽度和高度,也是相对于图像宽度和高度的比例值; 【注】可以下拉页面,在资源详情处查看标签具体内容;
recommend-type

Java毕业设计项目:校园二手交易网站开发指南

资源摘要信息:"Java是一种高性能、跨平台的面向对象编程语言,由Sun Microsystems(现为Oracle Corporation)的James Gosling等人在1995年推出。其设计理念是为了实现简单性、健壮性、可移植性、多线程以及动态性。Java的核心优势包括其跨平台特性,即“一次编写,到处运行”(Write Once, Run Anywhere),这得益于Java虚拟机(JVM)的存在,它提供了一个中介,使得Java程序能够在任何安装了相应JVM的设备上运行,无论操作系统如何。 Java是一种面向对象的编程语言,这意味着它支持面向对象编程(OOP)的三大特性:封装、继承和多态。封装使得代码模块化,提高了安全性;继承允许代码复用,简化了代码的复杂性;多态则增强了代码的灵活性和扩展性。 Java还具有内置的多线程支持能力,允许程序同时处理多个任务,这对于构建服务器端应用程序、网络应用程序等需要高并发处理能力的应用程序尤为重要。 自动内存管理,特别是垃圾回收机制,是Java的另一大特性。它自动回收不再使用的对象所占用的内存资源,这样程序员就无需手动管理内存,从而减轻了编程的负担,并减少了因内存泄漏而导致的错误和性能问题。 Java广泛应用于企业级应用开发、移动应用开发(尤其是Android平台)、大型系统开发等领域,并且有大量的开源库和框架支持,例如Spring、Hibernate、Struts等,这些都极大地提高了Java开发的效率和质量。 标签中提到的Java、毕业设计、课程设计和开发,意味着文件“毕业设计---社区(校园)二手交易网站.zip”中的内容可能涉及到Java语言的编程实践,可能是针对学生的课程设计或毕业设计项目,而开发则指出了这些内容的具体活动。 在文件名称列表中,“SJT-code”可能是指该压缩包中包含的是一个特定的项目代码,即社区(校园)二手交易网站的源代码。这类网站通常需要实现用户注册、登录、商品发布、浏览、交易、评价等功能,并且需要后端服务器支持,如数据库连接和事务处理等。考虑到Java的特性,网站的开发可能使用了Java Web技术栈,如Servlet、JSP、Spring Boot等,以及数据库技术,如MySQL或MongoDB等。"
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【MVC标准化:肌电信号处理的终极指南】:提升数据质量的10大关键步骤与工具

![MVC标准化](https://img-blog.csdn.net/20160221141956498) # 摘要 MVC标准化是肌电信号处理中确保数据质量的重要步骤,它对于提高测量结果的准确性和可重复性至关重要。本文首先介绍肌电信号的生理学原理和MVC标准化理论,阐述了数据质量的重要性及影响因素。随后,文章深入探讨了肌电信号预处理的各个环节,包括噪声识别与消除、信号放大与滤波技术、以及基线漂移的校正方法。在提升数据质量的关键步骤部分,本文详细描述了信号特征提取、MVC标准化的实施与评估,并讨论了数据质量评估与优化工具。最后,本文通过实验设计和案例分析,展示了MVC标准化在实践应用中的具
recommend-type

能否提供一个在R语言中执行Framingham数据集判别分析的详细和完整的代码示例?

当然可以。在R语言中,Framingham数据集是一个用于心血管疾病研究的经典数据集。以下是使用`ggfortify`包结合` factoextra`包进行判别分析的一个基本步骤: 首先,你需要安装所需的库,如果尚未安装,可以使用以下命令: ```r install.packages(c("ggfortify", "factoextra")) ``` 然后加载所需的数据集并做预处理。Framingham数据集通常存储在`MASS`包中,你可以通过下面的代码加载: ```r library(MASS) data(Framingham) ``` 接下来,我们假设你已经对数据进行了适当的清洗和转换
recommend-type

Blaseball Plus插件开发与构建教程

资源摘要信息:"Blaseball Plus" Blaseball Plus是一个与游戏Blaseball相关的扩展项目,该项目提供了一系列扩展和改进功能,以增强Blaseball游戏体验。在这个项目中,JavaScript被用作主要开发语言,通过在package.json文件中定义的脚本来完成构建任务。项目说明中提到了开发环境的要求,即在20.09版本上进行开发,并且提供了一个flake.nix文件来复制确切的构建环境。虽然Nix薄片是一项处于工作状态(WIP)的功能且尚未完全记录,但可能需要用户自行安装系统依赖项,其中列出了Node.js和纱(Yarn)的特定版本。 ### 知识点详细说明: #### 1. Blaseball游戏: Blaseball是一个虚构的棒球游戏,它在互联网社区中流行,其特点是独特的规则、随机事件和社区参与的元素。 #### 2. 扩展开发: Blaseball Plus是一个扩展,它可能是为在浏览器中运行的Blaseball游戏提供额外功能和改进的软件。扩展开发通常涉及编写额外的代码来增强现有软件的功能。 #### 3. JavaScript编程语言: JavaScript是一种高级的、解释执行的编程语言,被广泛用于网页和Web应用的客户端脚本编写,是开发Web扩展的关键技术之一。 #### 4. package.json文件: 这是Node.js项目的核心配置文件,用于声明项目的各种配置选项,包括项目名称、版本、依赖关系以及脚本命令等。 #### 5.构建脚本: 描述中提到的脚本,如`build:dev`、`build:prod:unsigned`和`build:prod:signed`,这些脚本用于自动化构建过程,可能包括编译、打包、签名等步骤。`yarn run`命令用于执行这些脚本。 #### 6. yarn包管理器: Yarn是一个快速、可靠和安全的依赖项管理工具,类似于npm(Node.js的包管理器)。它允许开发者和项目管理依赖项,通过简单的命令行界面可以轻松地安装和更新包。 #### 7. Node.js版本管理: 项目要求Node.js的具体版本,这里是14.9.0版本。管理特定的Node.js版本是重要的,因为在不同版本间可能会存在API变化或其他不兼容问题,这可能会影响扩展的构建和运行。 #### 8. 系统依赖项的安装: 文档提到可能需要用户手动安装系统依赖项,这在使用Nix薄片时尤其常见。Nix薄片(Nix flakes)是一个实验性的Nix特性,用于提供可复现的开发环境和构建设置。 #### 9. Web扩展的工件放置: 构建后的工件放置在`addon/web-ext-artifacts/`目录中,表明这可能是一个基于WebExtension的扩展项目。WebExtension是一种跨浏览器的扩展API,用于创建浏览器扩展。 #### 10. 扩展部署: 描述中提到了两种不同类型的构建版本:开发版(dev)和生产版(prod),其中生产版又分为未签名(unsigned)和已签名(signed)版本。这些不同的构建版本用于不同阶段的开发和发布。 通过这份文档,我们能够了解到Blaseball Plus项目的开发环境配置、构建脚本的使用、依赖管理工具的运用以及Web扩展的基本概念和部署流程。这些知识点对于理解JavaScript项目开发和扩展构建具有重要意义。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【天线性能提升密籍】:深入探究均匀线阵方向图设计原则及案例分析

![均匀线阵方向图](https://img-blog.csdnimg.cn/img_convert/0080eea0ca4af421d2bc9c74b87376c4.webp?x-oss-process=image/format,png) # 摘要 本文深入探讨了均匀线阵天线的基础理论及其方向图设计,旨在提升天线系统的性能和应用效能。文章首先介绍了均匀线阵及方向图的基本概念,并阐述了方向图设计的理论基础,包括波束形成与主瓣及副瓣特性的控制。随后,论文通过设计软件工具的应用和实际天线系统调试方法,展示了方向图设计的实践技巧。文中还包含了一系列案例分析,以实证研究验证理论,并探讨了均匀线阵性能
recommend-type

C#怎么把图片存入名为当前日期的文件夹里

在C#中,你可以通过`System.IO`命名空间下的`Directory`和`File`类来创建并存储图片到包含当前日期的文件夹里。以下是一个简单的示例: ```csharp using System; using System.IO; public void SaveImageToTodayFolder(string imagePath, string imageName) { // 获取当前日期 DateTime currentDate = DateTime.Now; string folderPath = Path.Combine(Environment.C
recommend-type

Deno Express:模仿Node.js Express的Deno Web服务器解决方案

资源摘要信息:"deno-express:该项目的灵感来自https" 知识点: 1. Deno 介绍:Deno 是一个简单、现代且安全的JavaScript和TypeScript运行时,由Node.js的原作者Ryan Dahl开发。它内置了诸如TypeScript支持、依赖模块的自动加载等功能。Deno的出现是为了解决Node.js存在的一些问题,比如全局状态污染和包管理等。 2. Express.js 概念:Express.js 是一个基于Node.js平台的极简、灵活的web应用开发框架。它提供了一系列强大的功能,用于开发单页、多页和混合web应用。Express.js的亮点在于其路由系统,对中间件的使用,以及对视图引擎的支持。 3. deno-express 项目:该项目以Node.js的Express框架为灵感,为Deno提供了一套类似于Express的Web服务器搭建方式。使用deno-express可以让开发者用熟悉的Express API在Deno环境中快速构建Web应用。 4. TypeScript 使用:TypeScript 是 JavaScript 的一个超集,添加了类型系统和对ES6+的新特性的支持。它最终会被编译成纯JavaScript代码,以便在浏览器和Node.js等JavaScript环境中运行。在deno-express项目中,通过TypeScript编写代码,不仅可以享受到静态类型检查的好处,还可以利用TypeScript的强类型系统来构建更稳定、易于维护的代码。 5. 代码示例解析:在描述中提供了一个简短的代码示例,示范了如何使用deno-express构建一个简单的web server。 - `import * as expressive from "https://raw.githubusercontent.com/NMathar/deno-express/master/mod.ts";` 这行代码通过网络导入了deno-express库的核心模块。 - `const port = 3000;` 定义了一个端口号,即web服务器将监听的端口。 - `const app = new expressive.App();` 创建了一个Express-like的App实例。 - `app.use(expressive.simpleLog());` 使用了一个简单的日志中间件,这可能会记录请求和响应的信息。 - `app.use(expressive.static_("./public"));` 使用了静态文件服务中间件,指定 "./public" 作为静态文件目录,使得该目录下的文件可以被Web服务访问。 - `app.use(expressive.bodyParser.json());` 使用了body-parser中间件,它能解析请求体中的JSON格式数据,使得在后续的请求处理中可以方便地获取这些数据。 6. Deno 与 Node.js 的对比:Deno与Node.js在设计哲学和实现上有明显差异。Deno不使用npm作为包管理器,而是通过URL导入模块。它也具备内置的TLS和网络测试工具,以及自动的依赖项管理,这都是Node.js需要外部模块来实现的功能。 7. 代码示例中的未显示部分:描述中仅展示了server.ts文件的部分内容,根据标准的Express应用结构,可能还会包括定义路由、设置视图引擎、错误处理中间件等。 8. 模块和库的使用:在deno-express项目中,开发者会接触到如何在Deno环境下使用外部模块。在JavaScript和TypeScript社区中,通过URL直接导入模块是一个新颖的方法,它使得依赖关系变得清晰,并且有助于构建安全、无包管理器污染的应用。 9. 对于TypeScript的依赖:由于deno-express项目的代码示例是用TypeScript编写的,所以它展示了TypeScript在Deno项目中如何使用。Deno对TypeScript的支持是原生的,无需额外编译器,直接运行即可。 10. Web服务器搭建实践:通过这个项目,开发者可以学习如何在Deno中搭建和管理Web服务器,包括如何处理路由、如何对请求和响应进行中间件处理等Web开发基础知识点。 通过对以上知识点的了解,可以对deno-express项目有一个全面的认识。该项目不仅为Deno提供了类似Express.js的Web开发体验,还展示了如何利用TypeScript来构建现代化、高性能的Web应用。