Matlab% 太阳系模拟 G = 6.67430e-11; % 万有引力常数 M_sun = 1.989e30; % 太阳质量 M_mercury = 3.3e23; % 水星质量 M_venus = 4.87e24; % 金星质量 M_earth = 5.97e24; % 地球质量 M_mars = 6.39e23; % 火星质量 M_jupiter = 1.898e27; % 木星质量 M_saturn = 5.68e26; % 土星质量 M_uranus = 8.68e25; % 天王星质量 M_neptune = 1.02e26; % 海王星质量 M_pluto = 1.31e22; % 冥王星质量 % 初始位置和速度 P_sun = [0; 0; 0]; P_mercury = [0; 5.7e10; 0]; P_venus = [0; 1.1e11; 0]; P_earth = [0; 1.5e11; 0]; P_mars = [0; 2.2e11; 0]; P_jupiter = [0; 7.8e11; 0]; P_saturn = [0; 1.4e12; 0]; P_uranus = [0; 2.9e12; 0]; P_neptune = [0; 4.5e12; 0]; P_pluto = [0; 5.9e12; 0]; V_sun = [0; 0; 0]; V_mercury = [4.8e4; 0; 0]; V_venus = [3.5e4; 0; 0]; V_earth = [2.98e4; 0; 0]; V_mars = [2.41e4; 0; 0]; V_jupiter = [1.3e4; 0; 0]; V_saturn = [9.7e3; 0; 0]; V_uranus = [6.8e3; 0; 0]; V_neptune = [5.4e3; 0; 0]; V_pluto = [4.7e3; 0; 0]; % 模拟时间和时间步长 t = 0:3600*24*365:3600*24*365*10; dt = 3600*24; % 数值积分 P = [P_sun, P_mercury, P_venus, P_earth, P_mars, P_jupiter, P_saturn, P_uranus, P_neptune, P_pluto]; V = [V_sun, V_mercury, V_venus, V_earth, V_mars, V_jupiter, V_saturn, V_uranus, V_neptune, V_pluto]; M = [M_sun, M_mercury, M_venus, M_earth, M_mars, M_jupiter, M_saturn, M_uranus, M_neptune, M_pluto]; for i = 1:length(t)-1 F = zeros(3, size(P, 2)); for j = 1:size(P, 2) for k = 1:size(P, 2) if j ~= k r = norm(P(:,j)-P(:,k)); F(:,j) = F(:,j) + G*M(j)*M(k)/r^2*(P(:,k)-P(:,j))/r; end end end A = F./M; V = V + A*dt; P = P + V*dt; end % 绘制行星轨道 figure; hold on; plot3(P(1,:), P(2,:), P(3,:), 'k'); grid on; axis equal; view(45, 45); 代码报错 错误使用:./ 2.矩阵维度必须一致

时间: 2023-12-10 08:39:02 浏览: 219
这个错误通常是由于矩阵的维度不匹配导致的。在这个代码中,错误可能出现在以下几行: ``` F = zeros(3, size(P, 2)); ... A = F./M; ``` 这里的 `size(P, 2)` 表示矩阵 `P` 的第二个维度的大小,也就是行星数量。因此,`F` 的第二个维度大小应该和行星数量相同。而 `M` 是行星质量的向量,它的大小应该和行星数量相同。如果这两个向量的大小不同,那么在进行除法运算时就会出现维度不匹配的错误。 你可以通过在这些语句之前添加 `disp` 语句来检查这些变量的大小: ``` disp(size(P, 2)); disp(size(M)); ``` 这样就可以找到错误所在,并修复代码。
相关问题

% 定义常数 G = 6.67e-11; % 万有引力常数 M_sun = 1.989e30; % 太阳质量 M_earth = 5.972e24; % 地球质量 M_moon = 7.342e22; % 月球质量 D_es = 1.49598e11; % 地-太距离 D_ms = 3.844e8; % 月-太距离 % 初始位置和速度 x_earth = [D_es, 0]; % 地球初始位置 x_moon = [D_es+D_ms, 0]; % 月球初始位置 v_earth = [0, 29.78e3]; % 地球初始速度 v_moon = [0, (29.78e3+1022)]; % 月球初始速度 % 时间间隔和步长 t_start = 0; t_end = 365*24*3600;% 一年的时间 dt = 3600; % 时间步长 % 初始化变量 x = [x_earth,x_moon,v_earth,v_moon]; t = t_start; % 循环计算并绘图 figure while t < t_end % 计算下一个时间步长的位置 x = euler_step(@three_body, x, t, dt); t = t + dt; % 画出地球和月球的位置 subplot(1,2,1) plot(x(1), x(2), 'bo', 'MarkerSize', 10, 'MarkerFaceColor', 'b'); hold on; plot(x(3), x(4), 'ro', 'MarkerSize', 5, 'MarkerFaceColor', 'r'); xlim([-D_es*1.5, D_es*1.5]); ylim([-D_es*1.5, D_es*1.5]); xlabel('x (m)'); ylabel('y (m)'); title(['Three-body simulation (t=',num2str(t/(24*3600),'%.2f'),' days)']); subplot(1,2,2) plot(x(3)-x(1), x(4)-x(2), 'ro', 'MarkerSize', 10, 'MarkerFaceColor', 'b'); hold on axis([-D_ms*3 D_ms*3 -D_ms*3 D_ms*3]) drawnow; end % 定义欧拉方法函数 function x_next = euler_step(f, x, t, dt) x_next = x + dt*f(x, t); end % 定义微分方程函数 function dx_dt = three_body(x,t) G = 6.67e-11; M_sun = 1.989e30; M_earth = 5.972e24; M_moon = 7.342e22; D_es = 1.49598e11; D_ms = 3.844e8; x_earth = x(1:2); x_moon = x(3:4); v_earth = x(5:6); v_moon = x(7:8); % 地球受到的引力 F_es = G*M_sun*M_earth/norm(x_earth)^2; % 月球受到的引力 F_ms = G*M_sun*M_moon/norm(x_moon)^2; % 地球和月球之间的引力 F_em = G*M_earth*M_moon/norm(x_earth-x_moon)^2; % 地球和月球的加速度 a_earth = -F_es/M_earth*(x_earth/norm(x_earth)) - F_em/M_earth*((x_earth-x_moon)/norm(x_earth-x_moon)); a_moon = -F_ms/M_moon*(x_moon/norm(x_moon)) + F_em/M_moon*((x_earth-x_moon)/norm(x_earth-x_moon)); dx_dt = [v_earth, v_moon, a_earth, a_moon]; end该程序中地球和月球的初始位置和初始速度分别为多少

在该程序中,地球的初始位置为 [D_es, 0],即距离太阳 D_es 的位置,位于 x 轴上,y 坐标为 0;地球的初始速度为 [0, 29.78e3],即地球绕太阳公转的速度为 29.78 km/s,沿着 x 轴正方向。 月球的初始位置为 [D_es+D_ms, 0],即距离太阳 D_es+D_ms 的位置,位于 x 轴上,y 坐标为 0;月球的初始速度为 [0, (29.78e3+1022)],即月球绕太阳公转的速度为 29.78 km/s,再加上绕地球自转的速度 1.022 km/s,沿着 x 轴正方向。

% 水星距离太阳最远处的距离 a = 0.6982e11; % 单位:m % 线速度 v = 3.886e4; % 单位:m/s % 椭圆的短轴长度 b = a * v; c=sqrt(a^2-b^2); % Kepler 第三定律计算周期 G = 6.67430e-11; % 引力常数,单位:m^3/(kg*s^2) M = 1.989e30; % 太阳的质量,单位:kg T = 2 * pi * sqrt(a^3 / (G * M)); % 单位:s % 水星到太阳的最近距离 closest_distance = b; % 第 50 天结束时水星的位置 time = 50 * 24 * 60 * 60; % 50天的秒数 mean_angular_velocity = 2 * pi / T; % 平均角速度 angle = mean_angular_velocity * time; % 角度 x = a * cos(angle); y = b * sin(angle); % 绘制水星绕太阳运行的轨道曲线 t = linspace(0, 2 * pi, 1000); orbit_x = a * cos(t); orbit_y = b * sin(t); % 绘图 figure; plot(orbit_x, orbit_y, 'b'); hold on; plot(x, -y, 'ro'); xlabel('x'); ylabel('y'); title('Orbit of Mercury'); legend('Orbit', 'Mercury Position');,在此代码上改进一点,使最后的图形会打出椭圆轨道的两个焦点

要画出椭圆轨道的两个焦点,需要先求出椭圆的长轴和焦距。长轴可以直接用距离太阳最远处的距离 a 计算得到。而焦距可以用勾股定理算出: ```matlab f = sqrt(a^2 - b^2); ``` 接下来,在绘图前加上以下代码,用红色的点标出两个焦点: ```matlab focus1 = [-f, 0]; focus2 = [f, 0]; plot(focus1(1), focus1(2), 'ro', 'MarkerSize', 5, 'MarkerFaceColor', 'r'); plot(focus2(1), focus2(2), 'ro', 'MarkerSize', 5, 'MarkerFaceColor', 'r'); ``` 最终的代码如下: ```matlab % 水星距离太阳最远处的距离 a = 0.6982e11; % 单位:m % 线速度 v = 3.886e4; % 单位:m/s % 椭圆的短轴长度 b = a * v; % 椭圆的焦距 f = sqrt(a^2 - b^2); % Kepler 第三定律计算周期 G = 6.67430e-11; % 引力常数,单位:m^3/(kg*s^2) M = 1.989e30; % 太阳的质量,单位:kg T = 2 * pi * sqrt(a^3 / (G * M)); % 单位:s % 水星到太阳的最近距离 closest_distance = b; % 第 50 天结束时水星的位置 time = 50 * 24 * 60 * 60; % 50天的秒数 mean_angular_velocity = 2 * pi / T; % 平均角速度 angle = mean_angular_velocity * time; % 角度 x = a * cos(angle); y = b * sin(angle); % 绘制水星绕太阳运行的轨道曲线 t = linspace(0, 2 * pi, 1000); orbit_x = a * cos(t); orbit_y = b * sin(t); % 绘图 figure; plot(orbit_x, orbit_y, 'b'); hold on; plot(x, -y, 'ro'); % 绘制焦点 focus1 = [-f, 0]; focus2 = [f, 0]; plot(focus1(1), focus1(2), 'ro', 'MarkerSize', 5, 'MarkerFaceColor', 'r'); plot(focus2(1), focus2(2), 'ro', 'MarkerSize', 5, 'MarkerFaceColor', 'r'); xlabel('x'); ylabel('y'); title('Orbit of Mercury'); legend('Orbit', 'Mercury Position', 'Foci'); ```
阅读全文

相关推荐

修改这个matlab函数,使得输出太阳月亮和地球的位置信息:function [x, y] = simulateSolarSystem(T, dt) % T: 模拟总时间 % dt: 模拟时间步长 % 天体初始位置和速度 sunPos = [0, 0]; sunVel = [0, 0]; moonPos = [384400000, 0]; moonVel = [0, 1022]; earthPos = [149600000, 0]; earthVel = [0, 29783]; % 天体质量 sunMass = 1.989e30; moonMass = 7.342e22; earthMass = 5.972e24; % 模拟步数 numSteps = ceil(T / dt); % 初始化位置和速度数组 sunX = zeros(numSteps, 1); sunY = zeros(numSteps, 1); moonX = zeros(numSteps, 1); moonY = zeros(numSteps, 1); earthX = zeros(numSteps, 1); earthY = zeros(numSteps, 1); % 模拟循环 for i = 1:numSteps % 计算太阳、月亮和地球的加速度 sunAcc = -sunPos * sunMass / norm(sunPos)^3; moonAcc = (-moonPos * moonMass / norm(moonPos)^3) + (sunPos - moonPos) * sunMass / norm(sunPos - moonPos)^3; earthAcc = (-earthPos * earthMass / norm(earthPos)^3) + (sunPos - earthPos) * sunMass / norm(sunPos - earthPos)^3 + (moonPos - earthPos) * moonMass / norm(moonPos - earthPos)^3; % 利用欧拉法更新位置和速度 sunPos = sunPos + sunVel * dt; sunVel = sunVel + sunAcc * dt; moonPos = moonPos + moonVel * dt; moonVel = moonVel + moonAcc * dt; earthPos = earthPos + earthVel * dt; earthVel = earthVel + earthAcc * dt; % 保存位置信息 sunX(i) = sunPos(1); sunY(i) = sunPos(2); moonX(i) = moonPos(1); moonY(i) = moonPos(2); earthX(i) = earthPos(1); earthY(i) = earthPos(2); end % 返回位置信息 x = [sunX, moonX, earthX]; y = [sunY, moonY, earthY]; end

最新推荐

recommend-type

Spring Boot Starter-kit:含多种技术应用,如数据库、认证机制,有应用结构.zip

1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。
recommend-type

包含 Spring Boot 等系列技术参考指南中文版及相关资源的仓库.zip

1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。
recommend-type

Unity3d 3D模型描边代码 懒人直接上代码

Unity3d 3D模型描边代码 懒人直接上代码
recommend-type

java毕业设计-基于SSM的超市管理系统【代码+部署教程】

原文链接:https://alading.blog.csdn.net/article/details/141710476 包含功能: 经理管理:负责经理信息维护与权限分配,确保管理层操作的安全性和高效性。 员工管理:管理员工信息,包括招聘、离职、考勤及权限设置,优化人力资源配置。 商品分类管理:对商品进行科学分类,便于商品检索与管理,提升顾客购物体验。 商品信息管理:维护商品详细信息,如名称、价格、描述等,确保信息准确无误。 商品入库管理:监控商品入库流程,记录库存变化,实现库存精准管理。 商品销售管理:处理销售事务,包括销售记录、退货处理,支持销售业绩分析。 缺货提醒管理:自动检测库存水平,及时发出缺货警告,保障商品供应连续性。 商品收银管理:处理交易结算,支持多种支付方式,确保收银过程快速准确。 供应商管理:维护供应商信息,评估合作效果,优化供应链,保证商品质量与供应稳定性。
recommend-type

MATLAB实现工业PCB电路板缺陷识别和检测【图像处理实战】 - 副本 (2).zip

MATLAB实现工业PCB电路板缺陷识别和检测【图像处理实战】项目详情请参见:https://handsome-man.blog.csdn.net/article/details/130493170 PCB板检测的大概流程如下:首先存储一个标准PCB板图像作为良好板材的参考标准,然后将待检测的PCB板图像进行处理,比较与标准PCB图像的差异,根据差异的情况来判断缺陷类型。 项目代码可顺利编译运行~
recommend-type

高清艺术文字图标资源,PNG和ICO格式免费下载

资源摘要信息:"艺术文字图标下载" 1. 资源类型及格式:本资源为艺术文字图标下载,包含的图标格式有PNG和ICO两种。PNG格式的图标具有高度的透明度以及较好的压缩率,常用于网络图形设计,支持24位颜色和8位alpha透明度,是一种无损压缩的位图图形格式。ICO格式则是Windows操作系统中常见的图标文件格式,可以包含不同大小和颜色深度的图标,通常用于桌面图标和程序的快捷方式。 2. 图标尺寸:所下载的图标尺寸为128x128像素,这是一个标准的图标尺寸,适用于多种应用场景,包括网页设计、软件界面、图标库等。在设计上,128x128像素提供了足够的面积来展现细节,而大尺寸图标也可以方便地进行缩放以适应不同分辨率的显示需求。 3. 下载数量及内容:资源提供了12张艺术文字图标。这些图标可以用于个人项目或商业用途,具体使用时需查看艺术家或资源提供方的版权声明及使用许可。在设计上,艺术文字图标融合了艺术与文字的元素,通常具有一定的艺术风格和创意,使得图标不仅具备标识功能,同时也具有观赏价值。 4. 设计风格与用途:艺术文字图标往往具有独特的设计风格,可能包括手绘风格、抽象艺术风格、像素艺术风格等。它们可以用于各种项目中,如网站设计、移动应用、图标集、软件界面等。艺术文字图标集可以在视觉上增加内容的吸引力,为用户提供直观且富有美感的视觉体验。 5. 使用指南与版权说明:在使用这些艺术文字图标时,用户应当仔细阅读下载页面上的版权声明及使用指南,了解是否允许修改图标、是否可以用于商业用途等。一些资源提供方可能要求在使用图标时保留作者信息或者在产品中适当展示图标来源。未经允许使用图标可能会引起版权纠纷。 6. 压缩文件的提取:下载得到的资源为压缩文件,文件名称为“8068”,意味着用户需要将文件解压缩以获取里面的PNG和ICO格式图标。解压缩工具常见的有WinRAR、7-Zip等,用户可以使用这些工具来提取文件。 7. 具体应用场景:艺术文字图标下载可以广泛应用于网页设计中的按钮、信息图、广告、社交媒体图像等;在应用程序中可以作为启动图标、功能按钮、导航元素等。由于它们的尺寸较大且具有艺术性,因此也可以用于打印材料如宣传册、海报、名片等。 通过上述对艺术文字图标下载资源的详细解析,我们可以看到,这些图标不仅是简单的图形文件,它们集合了设计美学和实用功能,能够为各种数字产品和视觉传达带来创新和美感。在使用这些资源时,应遵循相应的版权规则,确保合法使用,同时也要注重在设计时根据项目需求对图标进行适当调整和优化,以获得最佳的视觉效果。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

DMA技术:绕过CPU实现高效数据传输

![DMA技术:绕过CPU实现高效数据传输](https://res.cloudinary.com/witspry/image/upload/witscad/public/content/courses/computer-architecture/dmac-functional-components.png) # 1. DMA技术概述 DMA(直接内存访问)技术是现代计算机架构中的关键组成部分,它允许外围设备直接与系统内存交换数据,而无需CPU的干预。这种方法极大地减少了CPU处理I/O操作的负担,并提高了数据传输效率。在本章中,我们将对DMA技术的基本概念、历史发展和应用领域进行概述,为读
recommend-type

SGM8701电压比较器如何在低功耗电池供电系统中实现高效率运作?

SGM8701电压比较器的超低功耗特性是其在电池供电系统中高效率运作的关键。其在1.4V电压下工作电流仅为300nA,这种低功耗水平极大地延长了电池的使用寿命,尤其适用于功耗敏感的物联网(IoT)设备,如远程传感器节点。SGM8701的低功耗设计得益于其优化的CMOS输入和内部电路,即使在电池供电的设备中也能提供持续且稳定的性能。 参考资源链接:[SGM8701:1.4V低功耗单通道电压比较器](https://wenku.csdn.net/doc/2g6edb5gf4?spm=1055.2569.3001.10343) 除此之外,SGM8701的宽电源电压范围支持从1.4V至5.5V的电
recommend-type

mui框架HTML5应用界面组件使用示例教程

资源摘要信息:"HTML5基本类模块V1.46例子(mui角标+按钮+信息框+进度条+表单演示)-易语言" 描述中的知识点: 1. HTML5基础知识:HTML5是最新一代的超文本标记语言,用于构建和呈现网页内容。它提供了丰富的功能,如本地存储、多媒体内容嵌入、离线应用支持等。HTML5的引入使得网页应用可以更加丰富和交互性更强。 2. mui框架:mui是一个轻量级的前端框架,主要用于开发移动应用。它基于HTML5和JavaScript构建,能够帮助开发者快速创建跨平台的移动应用界面。mui框架的使用可以使得开发者不必深入了解底层技术细节,就能够创建出美观且功能丰富的移动应用。 3. 角标+按钮+信息框+进度条+表单元素:在mui框架中,角标通常用于指示未读消息的数量,按钮用于触发事件或进行用户交互,信息框用于显示临时消息或确认对话框,进度条展示任务的完成进度,而表单则是收集用户输入信息的界面组件。这些都是Web开发中常见的界面元素,mui框架提供了一套易于使用和自定义的组件实现这些功能。 4. 易语言的使用:易语言是一种简化的编程语言,主要面向中文用户。它以中文作为编程语言关键字,降低了编程的学习门槛,使得编程更加亲民化。在这个例子中,易语言被用来演示mui框架的封装和使用,虽然描述中提到“如何封装成APP,那等我以后再说”,暗示了mui框架与移动应用打包的进一步知识,但当前内容聚焦于展示HTML5和mui框架结合使用来创建网页应用界面的实例。 5. 界面美化源码:文件的标签提到了“界面美化源码”,这说明文件中包含了用于美化界面的代码示例。这可能包括CSS样式表、JavaScript脚本或HTML结构的改进,目的是为了提高用户界面的吸引力和用户体验。 压缩包子文件的文件名称列表中的知识点: 1. mui表单演示.e:这部分文件可能包含了mui框架中的表单组件演示代码,展示了如何使用mui框架来构建和美化表单。表单通常包含输入字段、标签、按钮和其他控件,用于收集和提交用户数据。 2. mui角标+按钮+信息框演示.e:这部分文件可能展示了mui框架中如何实现角标、按钮和信息框组件,并进行相应的事件处理和样式定制。这些组件对于提升用户交互体验至关重要。 3. mui进度条演示.e:文件名表明该文件演示了mui框架中的进度条组件,该组件用于向用户展示操作或数据处理的进度。进度条组件可以增强用户对系统性能和响应时间的感知。 4. html5标准类1.46.ec:这个文件可能是核心的HTML5类库文件,其中包含了HTML5的基础结构和类定义。"1.46"表明这是特定版本的类库文件,而".ec"文件扩展名可能是易语言项目中的特定格式。 总结来说,这个资源摘要信息涉及到HTML5的前端开发、mui框架的界面元素实现和美化、易语言在Web开发中的应用,以及如何利用这些技术创建功能丰富的移动应用界面。通过这些文件和描述,可以学习到如何利用mui框架实现常见的Web界面元素,并通过易语言将这些界面元素封装成移动应用。