鲸鱼优化算法Python代码
时间: 2024-12-10 22:13:05 浏览: 48
鲸鱼优化算法(Whale Optimization Algorithm, WOA)是一种生物启发式优化算法,模仿了海豚和虎鲸的行为策略。它的核心思想是通过领导者、追随者和探索者的角色,搜索高维空间中的最优解。
以下是简单实现鲸鱼优化算法(WOA)的Python代码示例:
```python
import numpy as np
def position_update(current_position, a, c):
D = np.random.uniform(0, 2 * a - 1)
r1 = np.random.rand()
r2 = np.random.rand()
A = 2 * a * r1 - a
C = 2 * r2
Xl = current_position - A * np.sin(D * np.pi) * abs(C * current_position)
if np.random.rand() < 0.5:
Xl += c * (np.random.uniform(-1, 1) * np.random.choice([-1, 1], size=current_position.shape))
return np.clip(Xl, -bound, bound)
class WhaleOptimizationAlgorithm:
def __init__(self, bounds, population_size, max_iter, a=2, c=2):
self.bounds = bounds
self.pop_size = population_size
self.max_iter = max_iter
self.a = a
self.c = c
self.position = self.init_population(bounds, population_size)
self.best_solution = None
def init_population(self, bounds, pop_size):
# 初始化种群随机位置在给定范围内
return np.random.uniform(bounds[:, 0], bounds[:, 1], size=(pop_size, len(bounds[0])))
def update_best_solution(self, new_solution):
if new_solution is not None and self.best_solution is None or np.all(new_solution < self.best_solution):
self.best_solution = new_solution
def optimize(self):
for _ in range(self.max_iter):
new_positions = [position_update(position, self.a, self.c) for position in self.position]
# 更新新位置和最佳解决方案
self.position = new_positions
self.update_best_solution(np.min(self.position, axis=0))
return self.best_solution
# 示例用法
bounds = np.array([[-10, 10], [-10, 10]]) # 假设目标函数有两个维度
woa = WhaleOptimizationAlgorithm(bounds, 30, 100)
best_solution = woa.optimize()
print("最优解:", best_solution)
```
在这个例子中,`position_update` 函数模拟了鲸鱼的游泳行为,而 `optimize` 方法则是整个算法的核心循环。请注意,实际应用时需要将此算法连接到特定的目标函数求解问题。
阅读全文