请求提供一个编程任务:基于指定文档,请给出客户端和服务端完整的代码实现,以满足文档中关于功能交互和通信的要求。包括所有必要的接口定义、连接设置、数据传输以及错误处理部分。请确保代码结构清晰,易于理解,并能成功实现文档所描述的功能。

时间: 2024-12-05 14:21:51 浏览: 11
为了完成《结构化任务一.docx》中的要求,以下是客户端和服务端的完整代码示例。这些代码实现了基本的Socket通信、设备入网认证和安全通信(使用AES对称加密)。 ### 服务端代码 (server.c) ```c #include <stdio.h> #include <stdlib.h> #include <string.h> #include <winsock2.h> #include <openssl/aes.h> #define PORT 8080 #define BUFFER_SIZE 1024 #define MAX_CLIENTS 5 // 预存的设备ID和认证信息 typedef struct { char device_id[20]; char auth_code[20]; } Device; Device devices[] = {{"device1", "pass1"}, {"device2", "pass2"}}; int num_devices = sizeof(devices) / sizeof(Device); void handle_client(SOCKET client_socket); int authenticate(char *device_id, char *auth_code); void aes_encrypt(const unsigned char *plaintext, int plaintext_len, const unsigned char *key, unsigned char *ciphertext); void aes_decrypt(const unsigned char *ciphertext, int ciphertext_len, const unsigned char *key, unsigned char *plaintext); int main() { WSADATA wsa; SOCKET server_fd, new_socket; struct sockaddr_in address; int addrlen = sizeof(address); char buffer[BUFFER_SIZE] = {0}; // Initialize Winsock if (WSAStartup(MAKEWORD(2, 2), &wsa) != 0) { printf("Failed to initialize Winsock.\n"); return -1; } // Create a socket if ((server_fd = socket(AF_INET, SOCK_STREAM, 0)) == INVALID_SOCKET) { printf("Socket creation failed.\n"); return -1; } // Bind the socket to an IP and port address.sin_family = AF_INET; address.sin_addr.s_addr = INADDR_ANY; address.sin_port = htons(PORT); if (bind(server_fd, (struct sockaddr *)&address, sizeof(address)) < 0) { perror("Bind failed."); return -1; } // Listen for incoming connections if (listen(server_fd, MAX_CLIENTS) < 0) { perror("Listen failed."); return -1; } printf("Server is listening on port %d...\n", PORT); while (1) { if ((new_socket = accept(server_fd, (struct sockaddr *)&address, (int *)&addrlen)) < 0) { perror("Accept failed."); continue; } printf("New connection accepted.\n"); handle_client(new_socket); closesocket(new_socket); } closesocket(server_fd); WSACleanup(); return 0; } void handle_client(SOCKET client_socket) { char buffer[BUFFER_SIZE] = {0}; char response[BUFFER_SIZE] = {0}; char key[AES_BLOCK_SIZE] = "thisisaverysecretkey"; // 对称加密密钥 unsigned char encrypted_data[BUFFER_SIZE] = {0}; unsigned char decrypted_data[BUFFER_SIZE] = {0}; // Receive device ID and auth code recv(client_socket, buffer, BUFFER_SIZE, 0); printf("Received: %s\n", buffer); // Extract device ID and auth code sscanf(buffer, "%[^:]:%s", buffer, buffer + strlen(buffer) + 1); char *device_id = strtok(buffer, ":"); char *auth_code = strtok(NULL, ":"); // Authenticate the device if (authenticate(device_id, auth_code)) { strcpy(response, "Authentication successful."); } else { strcpy(response, "Authentication failed."); send(client_socket, response, strlen(response), 0); closesocket(client_socket); return; } // Send welcome message send(client_socket, response, strlen(response), 0); // Secure communication loop while (1) { int n = recv(client_socket, encrypted_data, BUFFER_SIZE, 0); if (n <= 0) break; // Connection closed or error // Decrypt received data aes_decrypt(encrypted_data, n, key, decrypted_data); printf("Decrypted data: %s\n", decrypted_data); // Echo back the decrypted data aes_encrypt(decrypted_data, n, key, encrypted_data); send(client_socket, encrypted_data, n, 0); } } int authenticate(char *device_id, char *auth_code) { for (int i = 0; i < num_devices; i++) { if (strcmp(device_id, devices[i].device_id) == 0 && strcmp(auth_code, devices[i].auth_code) == 0) { return 1; // Authentication successful } } return 0; // Authentication failed } void aes_encrypt(const unsigned char *plaintext, int plaintext_len, const unsigned char *key, unsigned char *ciphertext) { AES_KEY aes_key; AES_set_encrypt_key(key, 128, &aes_key); AES_encrypt(plaintext, ciphertext, &aes_key); } void aes_decrypt(const unsigned char *ciphertext, int ciphertext_len, const unsigned char *key, unsigned char *plaintext) { AES_KEY aes_key; AES_set_decrypt_key(key, 128, &aes_key); AES_decrypt(ciphertext, plaintext, &aes_key); } ``` ### 客户端代码 (client.c) ```c #include <stdio.h> #include <stdlib.h> #include <string.h> #include <winsock2.h> #include <openssl/aes.h> #define SERVER_IP "127.0.0.1" #define PORT 8080 #define BUFFER_SIZE 1024 void connect_to_server(); void send_auth_request(); void secure_communication_loop(); void aes_encrypt(const unsigned char *plaintext, int plaintext_len, const unsigned char *key, unsigned char *ciphertext); void aes_decrypt(const unsigned char *ciphertext, int ciphertext_len, const unsigned char *key, unsigned char *plaintext); SOCKET sock; int main() { WSADATA wsa; // Initialize Winsock if (WSAStartup(MAKEWORD(2, 2), &wsa) != 0) { printf("Failed to initialize Winsock.\n"); return -1; } connect_to_server(); send_auth_request(); secure_communication_loop(); closesocket(sock); WSACleanup(); return 0; } void connect_to_server() { struct sockaddr_in server_address; // Create a socket if ((sock = socket(AF_INET, SOCK_STREAM, 0)) == INVALID_SOCKET) { printf("Socket creation failed.\n"); return; } // Set up the server address structure server_address.sin_family = AF_INET; server_address.sin_port = htons(PORT); inet_pton(AF_INET, SERVER_IP, &server_address.sin_addr); // Connect to the server if (connect(sock, (struct sockaddr *)&server_address, sizeof(server_address)) < 0) { perror("Connection failed."); return; } printf("Connected to server.\n"); } void send_auth_request() { char buffer[BUFFER_SIZE] = {0}; char device_id[] = "device1"; char auth_code[] = "pass1"; char response[BUFFER_SIZE] = {0}; // Send authentication request sprintf(buffer, "%s:%s", device_id, auth_code); send(sock, buffer, strlen(buffer), 0); // Receive authentication response recv(sock, response, BUFFER_SIZE, 0); printf("Server response: %s\n", response); } void secure_communication_loop() { char buffer[BUFFER_SIZE] = {0}; char key[AES_BLOCK_SIZE] = "thisisaverysecretkey"; // 对称加密密钥 unsigned char encrypted_data[BUFFER_SIZE] = {0}; unsigned char decrypted_data[BUFFER_SIZE] = {0}; while (1) { // Read user input fgets(buffer, BUFFER_SIZE, stdin); buffer[strcspn(buffer, "\n")] = 0; // Encrypt the message aes_encrypt((const unsigned char *)buffer, strlen(buffer), key, encrypted_data); // Send encrypted message send(sock, encrypted_data, strlen(buffer), 0); // Receive encrypted response int n = recv(sock, encrypted_data, BUFFER_SIZE, 0); if (n <= 0) break; // Connection closed or error // Decrypt the response aes_decrypt(encrypted_data, n, key, decrypted_data); printf("Server response: %s\n", decrypted_data); } } void aes_encrypt(const unsigned char *plaintext, int plaintext_len, const unsigned char *key, unsigned char *ciphertext) { AES_KEY aes_key; AES_set_encrypt_key(key, 128, &aes_key); AES_encrypt(plaintext, ciphertext, &aes_key); } void aes_decrypt(const unsigned char *ciphertext, int ciphertext_len, const unsigned char *key, unsigned char *plaintext) { AES_KEY aes_key; AES_set_decrypt_key(key, 128, &aes_key); AES_decrypt(ciphertext, plaintext, &aes_key); } ``` ### 说明 1. **服务端** (`server.c`): - 监听指定端口,接受客户端连接。 - 处理客户端的认证请求,验证设备ID和认证码。 - 如果认证成功,发送欢迎消息并进入安全通信循环。 - 在安全通信循环中,接收加密数据,解密后回显加密数据。 2. **客户端** (`client.c`): - 连接到服务端。 - 发送认证请求,包括设备ID和认证码。 - 接收认证响应,如果成功,进入安全通信循环。 - 在安全通信循环中,读取用户输入,加密后发送给服务端,并接收服务端的加密响应,解密后显示。 ### 编译和运行 - 使用 `Dev-C++` 或 `Code::Blocks` 编译和运行上述代码。 - 确保安装了 OpenSSL 库,并在编译时链接相应的库文件。 希望这些代码能满足您的需求!如果有任何问题或需要进一步的帮助,请随时告知。
阅读全文

相关推荐

最新推荐

recommend-type

网吧管理系统 完整文档 毕业设计

【网吧管理系统 完整文档 毕业...这个完整的文档详细阐述了一个网吧管理系统的开发过程,从系统设计的初衷到最终的实施和测试,为读者提供了全面的了解,对于学习软件工程和系统开发的学生来说,是一份宝贵的参考资料。
recommend-type

技术方案模版1.docx

【技术方案模板】是一种标准化的文档格式,用于清晰、系统地阐述一项技术解决方案,包括其设计、实现和预期效果。该模板通常包含了多个关键部分,旨在帮助读者理解方案的核心内容和实施步骤,确保项目的顺利进行。 ...
recommend-type

WebService调用技术文档.doc

它提供了一个平台,使得各种软件系统可以跨越操作系统、编程语言和硬件边界进行通信。 1. **什么是WebService** WebService是一个可以通过Web进行调用的应用程序接口(API)。它的核心是基于SOAP(Simple Object ...
recommend-type

XML轻松学习手册--XML肯定是未来的发展趋势,不论是网页设计师还是网络程序员,都应该及时学习和了解

4.DOM则为脚本和对象的交流提供一个公共平台,并将结果显示在浏览器窗口。 如果任何一个部分发生错误,都不会得到正确结果。 好了,看到这里,我们已经对XML是如何工作的有一个整体的大致的概念。通过这一章的...
recommend-type

TAO CORBA CPP 入门-stone编写的文档(word版)

在深入学习TAO CORBA C++编程时,你需要理解ORB的工作原理,掌握IDL的使用,编写客户端和服务端代码,以及如何发布和查找对象。此外,熟悉GIOP和IIOP(Internet Inter-ORB Protocol)协议对于理解ORB间的通信至关...
recommend-type

PowerShell控制WVD录像机技术应用

资源摘要信息:"录像机" 标题: "录像机" 可能指代了两种含义,一种是传统的录像设备,另一种是指计算机上的录像软件或程序。在IT领域,通常我们指的是后者,即录像机软件。随着技术的发展,现代的录像机软件可以录制屏幕活动、视频会议、网络课程等。这类软件多数具备高效率的视频编码、画面捕捉、音视频同步等功能,以满足不同的应用场景需求。 描述: "录像机" 这一描述相对简单,没有提供具体的功能细节或使用场景。但是,根据这个描述我们可以推测文档涉及的是关于如何操作录像机,或者如何使用录像机软件的知识。这可能包括录像机软件的安装、配置、使用方法、常见问题排查等信息。 标签: "PowerShell" 通常指的是微软公司开发的一种任务自动化和配置管理框架,它包含了一个命令行壳层和脚本语言。由于标签为PowerShell,我们可以推断该文档可能会涉及到使用PowerShell脚本来操作或管理录像机软件的过程。PowerShell可以用来执行各种任务,包括但不限于启动或停止录像、自动化录像任务、从录像机获取系统状态、配置系统设置等。 压缩包子文件的文件名称列表: WVD-main 这部分信息暗示了文档可能与微软的Windows虚拟桌面(Windows Virtual Desktop,简称WVD)相关。Windows虚拟桌面是一个桌面虚拟化服务,它允许用户在云端访问一个虚拟化的Windows环境。文件名中的“main”可能表示这是一个主文件或主目录,它可能是用于配置、管理或与WVD相关的录像机软件。在这种情况下,文档可能包含如何使用PowerShell脚本与WVD进行交互,例如记录用户在WVD环境中的活动,监控和记录虚拟机状态等。 基于以上信息,我们可以进一步推断知识点可能包括: 1. 录像机软件的基本功能和使用场景。 2. 录像机软件的安装和配置过程。 3. 录像机软件的高级功能,如自定义录像设置、自动化任务、音视频编辑等。 4. PowerShell脚本的基础知识,包括如何编写简单和复杂的脚本。 5. 如何利用PowerShell管理录像机软件,实现自动化控制和监控录像过程。 6. Windows虚拟桌面(WVD)的基本概念和使用方法。 7. 如何在WVD环境中集成录像功能,以及如何使用PowerShell进行相关配置和管理。 8. 录像数据的处理和存储,包括录像文件的格式、转码、备份和恢复等。 9. 录像机软件在企业环境中应用的策略和最佳实践。 10. 常见问题诊断和解决方法,以及如何使用PowerShell脚本来应对录像机软件出现的问题。 这个知识点总结覆盖了从基础操作到高级管理的多个方面,旨在为读者提供一个全面的录像机软件使用和管理的框架。通过这些知识点,IT专业人员可以更有效地部署、操作和维护录像机系统,确保录像机软件能够满足各种业务需求。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

Honeywell打印机驱动提升秘诀:从基础到高级配置的全方位解析

![HoneywellPrint_DLL_UM_CN.pdf](https://media.geeksforgeeks.org/wp-content/cdn-uploads/20190425160011/Anonymous-Types-in-C-1024x540.png) # 摘要 本文针对Honeywell打印机驱动的安装、配置、高级功能配置、故障诊断与优化以及安全与合规性进行了全面的介绍。首先概述了Honeywell打印机驱动的基础知识,随后详细阐述了驱动安装流程、基础打印设置及高级功能的实现。接着,文中探讨了打印机驱动在日常使用中可能遇到的常见问题及其解决方法,并提出了一系列打印性能优
recommend-type

Python输入三个数 a,b,c。判断能否以它们为三个边长构成直角三角形。若能,输出 YES,否则 输出NO。

在Python中,我们可以利用勾股定理来判断三个数a、b和c是否可以作为直角三角形的边长。如果满足a² + b² = c²,则这是一组直角三角形的三边;反之则不是。以下是一个简单的函数实现: ```python def is_right_triangle(a, b, c): if a**2 + b**2 == c**2 or a**2 + c**2 == b**2 or b**2 + c**2 == a**2: # 三种情况考虑,因为两边之和等于第三边的情况不属于常规直角三角形 return "YES" else: return "NO"
recommend-type

探索杂货店后端技术与JavaScript应用

资源摘要信息:"杂货店后端开发项目使用了JavaScript技术。" 在当今的软件开发领域,使用JavaScript来构建杂货店后端系统是一个非常普遍的做法。JavaScript不仅在前端开发中占据主导地位,其在Node.js的推动下,后端开发中也扮演着至关重要的角色。Node.js是一个能够使用JavaScript语言运行在服务器端的平台,它使得开发者能够使用熟悉的一门语言来开发整个Web应用程序。 后端开发是构建杂货店应用系统的核心部分,它主要负责处理应用逻辑、与数据库交互以及确保网络请求的正确响应。后端系统通常包含服务器、应用以及数据库这三个主要组件。 在开发杂货店后端时,我们可能会涉及到以下几个关键的知识点: 1. Node.js的环境搭建:首先需要在开发机器上安装Node.js环境。这包括npm(Node包管理器)和Node.js的运行时。npm用于管理项目依赖,比如各种中间件、数据库驱动等。 2. 框架选择:开发后端时,一个常见的选择是使用Express框架。Express是一个灵活的Node.js Web应用框架,提供了一系列强大的特性来开发Web和移动应用。它简化了路由、HTTP请求处理、中间件等功能的使用。 3. 数据库操作:根据项目的具体需求,选择合适的数据库系统(例如MongoDB、MySQL、PostgreSQL等)来进行数据的存储和管理。在JavaScript环境中,数据库操作通常会依赖于相应的Node.js驱动或ORM(对象关系映射)工具,如Mongoose用于MongoDB。 4. RESTful API设计:构建一个符合REST原则的API接口,可以让前端开发者更加方便地与后端进行数据交互。RESTful API是一种开发Web服务的架构风格,它利用HTTP协议的特性,使得Web服务能够使用统一的接口来处理资源。 5. 身份验证和授权:在杂货店后端系统中,管理用户账户和控制访问权限是非常重要的。这通常需要实现一些身份验证机制,如JWT(JSON Web Tokens)或OAuth,并根据用户角色和权限管理访问控制。 6. 错误处理和日志记录:为了保证系统的稳定性和可靠性,需要实现完善的错误处理机制和日志记录系统。这能帮助开发者快速定位问题,以及分析系统运行状况。 7. 容器化与部署:随着Docker等容器化技术的普及,越来越多的开发团队选择将应用程序容器化部署。容器化可以确保应用在不同的环境和系统中具有一致的行为,极大地简化了部署过程。 8. 性能优化:当后端应用处理大量数据或高并发请求时,性能优化是一个不可忽视的问题。这可能包括数据库查询优化、缓存策略的引入、代码层面的优化等等。 通过以上知识点的综合运用,我们可以构建出一个功能丰富、性能优化良好并且可扩展性强的杂货店后端系统。当然,在实际开发过程中,还需要充分考虑安全性、可维护性和测试等因素。