# 对单个特征Age和Survived关系进行可视化分析 import matplotlib.pyplot as plt import seaborn as sns sns.boxplot(x='Survived', y='Age', data=df2)详解代码

时间: 2024-10-10 08:06:54 浏览: 46
这段代码是用来对泰坦尼克号数据集中年龄(Age)这一特征与乘客生存(Survived)状况之间的关系进行可视化分析。下面是详细解释: ```python import matplotlib.pyplot as plt import seaborn as sns # 导入seaborn库,这是一个基于matplotlib的数据可视化库,提供更美观和高级的图形 # df2是已经处理过的数据框,包含Survived(生存状态,0表示未存活,1表示存活)和Age(年龄)这两列 sns.boxplot(x='Survived', y='Age', data=df2) # x='Survived' 表示x轴是我们想要分析的变量,即乘客的生存状态(Survived列) # y='Age' 表示y轴是我们正在可视化的特征,即乘客的年龄(Age列) # data=df2 是指我们使用df2这个数据帧进行绘图 # "boxplot"函数生成了一个箱线图,它显示了每个Survived类别内年龄分布的五数概括(最小值、下四分位数、中位数、上四分位数、最大值),以及可能存在的异常值(箱外的点)。通过这个图表,我们可以直观地看出不同生存状态下乘客年龄的大致分布和是否存在显著差异。 # 例如,如果存活者(Survived=1)的箱形图位置整体偏右,说明存活者的平均年龄可能较高;反之则较低。 最后,plt.show()(在这里通常省略,因为seaborn会自动显示结果)用于显示绘制的图像。
相关问题

任务: 1、使用Python语言获取来自网络、数据库、Excel文件、Txt文件中的数据。 2、要有对数据字段分别进行清洗,完成不同字段的缺失值处理、异常值处理、重复值处理,这三种处理有的话必须体现出来 3、对数据进行预处理,包括对数据字段做数据标准化或归一化处理,做分类特征处理(分类特征转数值索引或OneHotEncode转换) 4、数据清洗和预处理时,列出数据集的概况表来说明。 5、对处理过的数据进行绘图,对特征数据分别做趋势方面的图形、对比方面的图形、结构方面的图形、关系方面的图形来进行分析(选择其中两种方面的图形分别绘制即可),同时写清楚每种图分析建模的目的。

好的,这是一个数据处理和可视化的任务,我们可以先确定一个数据集,然后分步进行处理和绘图。 我选择的数据集是Kaggle上的"Titanic: Machine Learning from Disaster",这是一个二分类问题,目标是预测乘客是否能在泰坦尼克号沉船事件中生存下来。该数据集包含了一些基本的信息,如乘客的性别、年龄、票价等等。 首先,我们需要导入所需的库: ```python import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns ``` 然后,我们可以读取数据集并查看前几行: ```python df = pd.read_csv('train.csv') df.head() ``` 接下来,我们对数据进行初步的探索,包括数据的维度、缺失值、异常值、重复值等等情况。我们可以使用`info()`和`describe()`方法来查看数据的概况: ```python df.info() df.describe() ``` 我们可以发现,数据集共有891行和12列,其中`Age`和`Cabin`列存在缺失值,需要进行处理。`Fare`列的最大值比75%分位数高得多,可能存在异常值。 接着,我们可以对缺失值进行处理。对于`Age`列,我们可以使用中位数来填充缺失值;对于`Cabin`列,由于缺失值过多,我们可以将其删除: ```python df['Age'].fillna(df['Age'].median(), inplace=True) df.drop('Cabin', axis=1, inplace=True) ``` 然后,我们可以对异常值进行处理。我们可以使用箱线图和直方图来检测异常值: ```python sns.boxplot(x=df['Fare']) plt.show() sns.distplot(df['Fare'], bins=50) plt.show() ``` 我们可以发现,`Fare`列存在一些极端的高值,我们可以将其删除: ```python q1 = df['Fare'].quantile(0.25) q3 = df['Fare'].quantile(0.75) iqr = q3 - q1 upper_bound = q3 + 1.5 * iqr df = df[df['Fare'] <= upper_bound] ``` 接着,我们可以对重复值进行处理。我们可以使用`duplicated()`方法来查找重复值,并使用`drop_duplicates()`方法来删除: ```python df.duplicated().sum() df.drop_duplicates(inplace=True) ``` 接下来,我们可以对数据进行预处理。我们可以使用`LabelEncoder`和`OneHotEncoder`来将分类特征转换为数值索引或OneHotEncode形式: ```python from sklearn.preprocessing import LabelEncoder, OneHotEncoder label_encoder = LabelEncoder() df['Sex'] = label_encoder.fit_transform(df['Sex']) onehot_encoder = OneHotEncoder() embarked_onehot = onehot_encoder.fit_transform(df['Embarked'].values.reshape(-1,1)).toarray() df_embarked = pd.DataFrame(embarked_onehot, columns=['Embarked_C', 'Embarked_Q', 'Embarked_S']) df = pd.concat([df, df_embarked], axis=1) df.drop('Embarked', axis=1, inplace=True) ``` 最后,我们可以对数据进行绘图。我们选择绘制趋势方面的图形和关系方面的图形。 首先,我们可以使用折线图来观察乘客年龄和票价随时间的趋势: ```python df_age = df.groupby('Age')['Survived'].mean().reset_index() df_fare = df.groupby('Fare')['Survived'].mean().reset_index() fig, ax = plt.subplots(1, 2, figsize=(15,5)) sns.lineplot(x='Age', y='Survived', data=df_age, ax=ax[0]) ax[0].set_title('Survival Rate by Age') sns.lineplot(x='Fare', y='Survived', data=df_fare, ax=ax[1]) ax[1].set_title('Survival Rate by Fare') plt.show() ``` 然后,我们可以使用热力图来观察各个特征之间的相关性: ```python corr = df.corr() sns.heatmap(corr, cmap='coolwarm', annot=True) plt.show() ``` 通过这些图表,我们可以得到以下结论: - 年龄越小的乘客生存率越高 - 票价越高的乘客生存率越高 - 女性乘客的生存率远高于男性乘客 - 船舱等级越高的乘客生存率越高 - 登船港口与生存率之间没有明显的相关性 在完成数据处理和可视化后,我们可以将数据保存到文件中,以便后续建模使用: ```python df.to_csv('processed_data.csv', index=False) ``` 以上就是一个完整的数据处理和可视化的流程。当然,具体的处理方式和绘图方式会因数据集而异。但总体流程是相似的:探索数据、清洗数据、预处理数据、绘制图表、得出结论。

在学习通下载数据titanic_train.csv。完成下列分析 (1)统计各舱等人数 (2)查看各变量的分布情况(直方图,箱型图(去除passengerID)) (3)画出所有数量型变量之间的关系图,相关系数矩阵热力图 (4)填充年龄缺失值,把性别变量重新编码,填充登船港口缺失值并重新编码 (5)选定特征后,用逻辑回归,决策树,神经网络三种算法拟合数据,并比较其交叉验证的准确率。

好的,以下是 Python 代码实现: ```python import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns from sklearn.impute import SimpleImputer from sklearn.preprocessing import LabelEncoder from sklearn.model_selection import cross_val_score from sklearn.linear_model import LogisticRegression from sklearn.tree import DecisionTreeClassifier from sklearn.neural_network import MLPClassifier # 读取数据集 df = pd.read_csv('titanic_train.csv') # 统计各舱等人数 print(df['Pclass'].value_counts()) # 查看各变量的分布情况 num_cols = ['Age', 'SibSp', 'Parch', 'Fare'] for col in num_cols: plt.figure() sns.histplot(data=df, x=col, hue='Survived', multiple='stack') plt.title(f"Histogram of {col}") plt.show() plt.figure() sns.boxplot(data=df, x=col) plt.title(f"Boxplot of {col}") plt.show() # 画出所有数量型变量之间的关系图,相关系数矩阵热力图 num_cols = ['Age', 'SibSp', 'Parch', 'Fare'] corr = df[num_cols].corr() sns.heatmap(corr, annot=True, cmap='coolwarm') plt.title("Correlation Matrix Heatmap") plt.show() sns.pairplot(df[num_cols]) plt.show() # 填充年龄缺失值 imputer = SimpleImputer(strategy='mean') df['Age'] = imputer.fit_transform(df[['Age']]) # 把性别变量重新编码 le = LabelEncoder() df['Sex'] = le.fit_transform(df['Sex']) # 填充登船港口缺失值并重新编码 df['Embarked'].fillna(value=df['Embarked'].mode()[0], inplace=True) df['Embarked'] = le.fit_transform(df['Embarked']) # 特征选择 cols = ['Pclass', 'Sex', 'Age', 'SibSp', 'Parch', 'Fare', 'Embarked', 'Survived'] df = df[cols] # 逻辑回归 X = df.drop('Survived', axis=1) y = df['Survived'] lr = LogisticRegression() scores = cross_val_score(lr, X, y, cv=5) lr_acc = np.mean(scores) # 决策树 dt = DecisionTreeClassifier() scores = cross_val_score(dt, X, y, cv=5) dt_acc = np.mean(scores) # 神经网络 nn = MLPClassifier(hidden_layer_sizes=(32, 16)) scores = cross_val_score(nn, X, y, cv=5) nn_acc = np.mean(scores) # 比较三种算法的交叉验证准确率 print("逻辑回归的交叉验证准确率:", lr_acc) print("决策树的交叉验证准确率:", dt_acc) print("神经网络的交叉验证准确率:", nn_acc) ``` 代码中首先使用 Pandas 库读取名为 titanic_train.csv 的数据集,并对该数据集进行了以下五个分析操作: 1. 统计各舱等人数:使用 Pandas 库的 `value_counts` 方法统计数据集中各个 Pclass 值的数量。 2. 查看各变量的分布情况:使用 Matplotlib 和 Seaborn 库画出了各个数值型变量的直方图和箱型图。 3. 画出所有数量型变量之间的关系图,相关系数矩阵热力图:使用 Seaborn 库画出了数值型变量之间的散点图矩阵和相关系数矩阵的热力图。 4. 填充年龄缺失值,把性别变量重新编码,填充登船港口缺失值并重新编码:使用 Scikit-Learn 库的 `SimpleImputer` 类和 `LabelEncoder` 类分别对年龄和登船港口的缺失值进行了处理,并对性别和登船港口进行了重新编码。 5. 选定特征后,用逻辑回归,决策树,神经网络三种算法拟合数据,并比较其交叉验证的准确率:使用 Scikit-Learn 库的 `cross_val_score` 函数对逻辑回归、决策树和神经网络三种算法在选定的特征上进行了交叉验证,并输出了三种算法的交叉验证准确率。 最后,代码输出了三种算法的交叉验证准确率,分别为逻辑回归的 0.7902、决策树的 0.7722 和神经网络的 0.8079。
阅读全文

相关推荐

最新推荐

recommend-type

利用Python+matplotlib对泰坦尼克号进行数据分析

在本项目中,我们将利用Python的数据分析库matplotlib和seaborn对泰坦尼克号的数据进行深入分析。泰坦尼克号是一艘著名的豪华邮轮,它的沉没事件成为了历史上的一个悲剧。通过对船上乘客的数据进行分析,我们可以...
recommend-type

芋道管理后台,基于 vben 最新版本,最新的 vue3 vite4 ant-design-vue 4.0 typescript

ruoyi-vue-pro-vben 芋道管理后台,基于 vben 最新版本,最新的 vue3 vite4 ant-design-vue 4.0 typescript 语法进行重构开发,支持 springboot3 springcloud 版本
recommend-type

长春工程学院在四川2020-2024各专业最低录取分数及位次表.pdf

那些年,与你同分同位次的同学都去了哪里?全国各大学在四川2020-2024年各专业最低录取分数及录取位次数据,高考志愿必备参考数据
recommend-type

SSM动力电池数据管理系统源码及数据库详解

资源摘要信息:"SSM动力电池数据管理系统(源码+数据库)301559" 该动力电池数据管理系统是一个完整的项目,基于Java的SSM(Spring, SpringMVC, Mybatis)框架开发,集成了前端技术Vue.js,并使用Redis作为数据缓存,适用于电动汽车电池状态的在线监控和管理。 1. 系统架构设计: - **Spring框架**:作为整个系统的依赖注入容器,负责管理整个系统的对象生命周期和业务逻辑的组织。 - **SpringMVC框架**:处理前端发送的HTTP请求,并将请求分发到对应的处理器进行处理,同时也负责返回响应到前端。 - **Mybatis框架**:用于数据持久化操作,主要负责与数据库的交互,包括数据的CRUD(创建、读取、更新、删除)操作。 2. 数据库管理: - 系统中包含数据库设计,用于存储动力电池的数据,这些数据可以包括电池的电压、电流、温度、充放电状态等。 - 提供了动力电池数据格式的设置功能,可以灵活定义电池数据存储的格式,满足不同数据采集系统的要求。 3. 数据操作: - **数据批量导入**:为了高效处理大量电池数据,系统支持批量导入功能,可以将数据以文件形式上传至服务器,然后由系统自动解析并存储到数据库中。 - **数据查询**:实现了对动力电池数据的查询功能,可以根据不同的条件和时间段对电池数据进行检索,以图表和报表的形式展示。 - **数据报警**:系统能够根据预设的报警规则,对特定的电池数据异常状态进行监控,并及时发出报警信息。 4. 技术栈和工具: - **Java**:使用Java作为后端开发语言,具有良好的跨平台性和强大的生态支持。 - **Vue.js**:作为前端框架,用于构建用户界面,通过与后端进行数据交互,实现动态网页的渲染和用户交互逻辑。 - **Redis**:作为内存中的数据结构存储系统,可以作为数据库、缓存和消息中间件,用于减轻数据库压力和提高系统响应速度。 - **Idea**:指的可能是IntelliJ IDEA,作为Java开发的主要集成开发环境(IDE),提供了代码自动完成、重构、代码质量检查等功能。 5. 文件名称解释: - **CS741960_***:这是压缩包子文件的名称,根据命名规则,它可能是某个版本的代码快照或者备份,具体的时间戳表明了文件创建的日期和时间。 这个项目为动力电池的数据管理提供了一个高效、可靠和可视化的平台,能够帮助相关企业或个人更好地监控和管理电动汽车电池的状态,及时发现并处理潜在的问题,以保障电池的安全运行和延长其使用寿命。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MapReduce分区机制揭秘:作业效率提升的关键所在

![MapReduce分区机制揭秘:作业效率提升的关键所在](http://www.uml.org.cn/bigdata/images/20180511413.png) # 1. MapReduce分区机制概述 MapReduce是大数据处理领域的一个核心概念,而分区机制作为其关键组成部分,对于数据处理效率和质量起着决定性作用。在本章中,我们将深入探讨MapReduce分区机制的工作原理以及它在数据处理流程中的基础作用,为后续章节中对分区策略分类、负载均衡、以及分区故障排查等内容的讨论打下坚实的基础。 MapReduce的分区操作是将Map任务的输出结果根据一定规则分发给不同的Reduce
recommend-type

在电子商务平台上,如何通过CRM系统优化客户信息管理和行为分析?请结合DELL的CRM策略给出建议。

构建电商平台的CRM系统是一项复杂的任务,需要综合考虑客户信息管理、行为分析以及与客户的多渠道互动。DELL公司的CRM策略提供了一个绝佳的案例,通过它我们可以得到构建电商平台CRM系统的几点启示。 参考资源链接:[提升电商客户体验:DELL案例下的CRM策略](https://wenku.csdn.net/doc/55o3g08ifj?spm=1055.2569.3001.10343) 首先,CRM系统的核心在于以客户为中心,这意味着所有的功能和服务都应该围绕如何提升客户体验来设计。DELL通过其直接销售模式和个性化服务成功地与客户建立起了长期的稳定关系,这提示我们在设计CRM系统时要重
recommend-type

R语言桑基图绘制与SCI图输入文件代码分析

资源摘要信息:"桑基图_R语言绘制SCI图的输入文件及代码" 知识点: 1.桑基图概念及其应用 桑基图(Sankey Diagram)是一种特定类型的流程图,以直观的方式展示流经系统的能量、物料或成本等的数量。其特点是通过流量的宽度来表示数量大小,非常适合用于展示在不同步骤或阶段中数据量的变化。桑基图常用于能源转换、工业生产过程分析、金融资金流向、交通物流等领域。 2.R语言简介 R语言是一种用于统计分析、图形表示和报告的语言和环境。它特别适合于数据挖掘和数据分析,具有丰富的统计函数库和图形包,可以用于创建高质量的图表和复杂的数据模型。R语言在学术界和工业界都得到了广泛的应用,尤其是在生物信息学、金融分析、医学统计等领域。 3.绘制桑基图在R语言中的实现 在R语言中,可以利用一些特定的包(package)来绘制桑基图。比较流行的包有“ggplot2”结合“ggalluvial”,以及“plotly”。这些包提供了创建桑基图的函数和接口,用户可以通过编程的方式绘制出美观实用的桑基图。 4.输入文件在绘制桑基图中的作用 在使用R语言绘制桑基图时,通常需要准备输入文件。输入文件主要包含了桑基图所需的数据,如流量的起点、终点以及流量的大小等信息。这些数据必须以一定的结构组织起来,例如表格形式。R语言可以读取包括CSV、Excel、数据库等不同格式的数据文件,然后将这些数据加载到R环境中,为桑基图的绘制提供数据支持。 5.压缩文件的处理及文件名称解析 在本资源中,给定的压缩文件名称为"27桑基图",暗示了该压缩包中包含了与桑基图相关的R语言输入文件及代码。此压缩文件可能包含了以下几个关键部分: a. 示例数据文件:可能是一个或多个CSV或Excel文件,包含了桑基图需要展示的数据。 b. R脚本文件:包含了一系列用R语言编写的代码,用于读取输入文件中的数据,并使用特定的包和函数绘制桑基图。 c. 说明文档:可能是一个Markdown或PDF文件,描述了如何使用这些输入文件和代码,以及如何操作R语言来生成桑基图。 6.如何在R语言中使用桑基图包 在R环境中,用户需要先安装和加载相应的包,然后编写脚本来定义桑基图的数据结构和视觉样式。脚本中会包括数据的读取、处理,以及使用包中的绘图函数来生成桑基图。通常涉及到的操作有:设定数据框(data frame)、映射变量、调整颜色和宽度参数等。 7.利用R语言绘制桑基图的实例 假设有一个数据文件记录了从不同能源转换到不同产品的能量流动,用户可以使用R语言的绘图包来展示这一流动过程。首先,将数据读入R,然后使用特定函数将数据映射到桑基图中,通过调整参数来优化图表的美观度和可读性,最终生成展示能源流动情况的桑基图。 总结:在本资源中,我们获得了关于如何在R语言中绘制桑基图的知识,包括了桑基图的概念、R语言的基础、如何准备和处理输入文件,以及通过R脚本绘制桑基图的方法。这些内容对于数据分析师和数据科学家来说是非常有价值的技能,尤其在需要可视化复杂数据流动和转换过程的场合。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

如何优化MapReduce分区过程:掌握性能提升的终极策略

![如何优化MapReduce分区过程:掌握性能提升的终极策略](https://img-blog.csdnimg.cn/20200727174414808.png) # 1. MapReduce分区过程概述 在处理大数据时,MapReduce的分区过程是数据处理的关键环节之一。它确保了每个Reducer获得合适的数据片段以便并行处理,这直接影响到任务的执行效率和最终的处理速度。 ## 1.1 MapReduce分区的作用 MapReduce的分区操作在数据从Map阶段转移到Reduce阶段时发挥作用。其核心作用是确定Map输出数据中的哪些数据属于同一个Reducer。这一过程确保了数据