什么是平衡二叉排序树?

时间: 2023-12-25 13:28:21 浏览: 104
平衡二叉排序树(Balanced Binary Search Tree),也称为AVL树,是一种自平衡的二叉排序树。它的特点是任何节点的两个子树的高度差不超过1,这样可以保证在最坏情况下,查找、插入和删除操作的时间复杂度都是O(log n)。AVL树是由G.M. Adelson-Velsky和E.M. Landis在1962年发明的,它是最早被发明的自平衡二叉排序树之一。
相关问题

设有关键字序列为:(Dec, Feb, Nov, Oct, June, Sept, Aug, Apr, May, July, Jan, Mar) ,请手工构造一棵二叉排序树。该树是平衡二叉排序树? 若不是,请为其构造一棵平衡二叉排序树。

我明白了,下面是手工构造的二叉排序树: ``` Dec / \ Feb Nov / / \ Apr June Oct \ / \ May Sept Aug / \ July Jan \ Mar ``` 由于这棵树不是平衡二叉排序树,我们需要为其构造一棵平衡二叉排序树。一种简单的方法是使用 AVL 树算法,下面是构造后的平衡二叉排序树: ``` Oct / \ Feb Nov / \ / \ Apr June Sept Dec / / / \ Mar July Aug Jan \ May ``` 可以看到,将关键字序列按照字典序排序后,构造的平衡二叉排序树高度为 3,比手工构造的二叉排序树高度低了一层,因此更加平衡。

简述非平衡二叉排序树转换成平衡二叉排序树过程

非平衡二叉排序树转换成平衡二叉排序树的过程通常称为平衡化操作,其中最常用的方法是通过旋转操作来实现。下面是一个简要的描述: 1. 首先,我们需要确定当前二叉排序树的不平衡节点。常见的不平衡情况有左左、左右、右右和右左四种情况。 2. 对于左左和右右的情况,可以通过单旋转来进行平衡化。对于左左情况,我们需要进行右旋转;对于右右情况,我们需要进行左旋转。 3. 对于左右和右左的情况,需要进行双旋转来进行平衡化。对于左右情况,我们需要先对不平衡节点的左子树进行左旋转,然后再对整个二叉排序树进行右旋转;对于右左情况,我们需要先对不平衡节点的右子树进行右旋转,然后再对整个二叉排序树进行左旋转。 4. 在进行旋转操作后,需要更新相关节点的高度信息,以保证整个二叉排序树的平衡性。 需要注意的是,以上只是一种常见的平衡化操作方法,实际上还有其他方法可以实现非平衡二叉排序树到平衡二叉排序树的转换。
阅读全文

相关推荐

application/x-rar
1本程序在vc++6.0编译通过并能正常运行。 2主界面 程序已经尽量做到操作简便了,用户只需要根据提示一步步进行操作就行了。 六思考和总结: 这个课程设计的各个基本操作大部分都在我的综合性实验中实现了,所以做这个主要攻克插入和删除这两个算法!其中插入在书本上已经有了,其中的右平衡算法虽然没有给出,但通过给出的左平衡算法很容易就可以写出右平衡算法。所以最终的点就在于删除算法的实现!做的过程中对插入算法进行了非常非常多次的尝试!花了非常多的时间,这其中很多时候是在对程序进行单步调试,运用了VC6。0的众多良好工具,也学到了很多它的许多好的调试手段。 其中删除算法中最难想到的一点是:在用叶子结点代替要删除的非叶子结点后,应该递归的运用删除算法去删除叶子结点!这就是整个算法的核心,其中很强烈得体会到的递归的强大,递归的最高境界(我暂时能看到的境界)! 其它的都没什么了。选做的那两个算法很容易实现的: 1合并两棵平衡二叉排序树:只需遍历其中的一棵,将它的每一个元素插入到另一棵即可。 2拆分两棵平衡二叉排序树:只需以根结点为中心,左子树独立为一棵,右子树独立为一棵,最后将根插入到左子树或右子树即可。 BSTreeEmpty(BSTree T) 初始条件:平衡二叉排序树存在。 操作结果:若T为空平衡二叉排序树,则返回TRUE,否则FALSE. BSTreeDepth(BSTree T) 初始条件:平衡二叉排序树存在。 操作结果:返回T的深度。 LeafNum(BSTree T) 求叶子结点数,非递归中序遍历 NodeNum(BSTree T) 求结点数,非递归中序遍历 DestoryBSTree(BSTree *T) 后序遍历销毁平衡二叉排序树T R_Rotate(BSTree *p) 对以*p为根的平衡二叉排序树作右旋处理,处理之后p指向新的树根结点 即旋转处理之前的左子树的根结点 L_Rotate(BSTree *p) 对以*p为根的平衡二叉排序树作左旋处理,处理之后p指向新的树根结点, 即旋转处理之前的右子树的根结点 LeftBalance(BSTree *T) 对以指针T所指结点为根的平衡二叉排序树作左平衡旋转处理, 本算法结束时,指针T指向新的根结点 RightBalance(BSTree *T) 对以指针T所指结点为根的平衡二叉排序树作右平衡旋转处理, 本算法结束时,指针T指向新的根结点 Insert_AVL(BSTree *T, TElemType e, int *taller) 若在平衡的二叉排序树T中不存在和e有相同的关键字的结点, 则插入一个数据元素为e的新结点,并返回OK,否则返回ERROR. 若因插入而使二叉排序树失去平衡,则作平衡旋转处理 布尔变量taller反映T长高与否 InOrderTraverse(BSTree T) 递归中序遍历输出平衡二叉排序树 SearchBST(BSTree T, TElemType e, BSTree *f, BSTree *p) 在根指针T所指的平衡二叉排序树中递归的查找其元素值等于e的数据元素, 若查找成功,则指针p指向该数据元素结点,并返回TRUE,否则指针p 指向查找路径上访问的最后一个结点并返回FALSE,指针f指向T的双亲, 其初始调用值为NULL Delete_AVL(BSTree *T, TElemType e, int *shorter) 在平衡二叉排序树中删除元素值为e的结点,成功返回OK,失败返回ERROR PrintBSTree_GList(BSTree T) 以广义表形式打印出来 PrintBSTree_AoList(BSTree T, int length) 以凹入表形式打印,length初始值为0 Combine_Two_AVL(BSTree *T1, BSTree T2) 合并两棵平衡二叉排序树 Split_AVL(BSTree T, BSTree *T1, BSTree *T2) 拆分两棵平衡二叉树 } (2)存储结构的定义: typedef struct BSTNode { TElemType data; int bf; //结点的平衡因子 struct BSTNode *lchild, *rchild;//左.右孩子指针 }BSTNode, *BSTree;
application/x-rar
攀枝花学院本科学生课程设计任务书 题 目 二叉排序树与平衡二叉树的实现 1、课程设计的目的 使学生进一步理解和掌握课堂上所学各种基本抽象数据类型的逻辑结构、存储结构和操作实现算法,以及它们在程序中的使用方法。 使学生掌握软件设计的基本内容和设计方法,并培养学生进行规范化软件设计的能力。 3) 使学生掌握使用各种计算机资料和有关参考资料,提高学生进行程序设计的基本能力。 2、课程设计的内容和要求(包括原始数据、技术要求、工作要求等) (1) (1)以回车('\n')为输入结束标志,输入数列L,生成一棵二叉排序树T; (2)对二叉排序树T作中序遍历,输出结果; (3)计算二叉排序树T查找成功的平均查找长度,输出结果; (4)输入元素x,查找二叉排序树T,若存在含x的结点,则删该结点,并作中序遍历(执行操作2);否则输出信息“无x”; (5)用数列L,生成平衡的二叉排序树BT:当插入新元素之后,发现当前的二叉排序树BT不是平衡的二叉排序树,则立即将它转换成新的平衡的二叉排序树BT; (6)计算平衡的二叉排序树BT的平均查找长度,输出结果。 3、主要参考文献 [1]刘大有等,《数据结构》(C语言版),高等教育出版社 [2]严蔚敏等,《数据结构》(C语言版),清华大学出版社 [3]William Ford,William Topp,《Data Structure with C++》清华大学出版社 [4]苏仕华等,数据结构课程设计,机械工业出版社 4、课程设计工作进度计划 第1天 完成方案设计与程序框图 第2、3天 编写程序代码 第4天 程序调试分析和结果 第5天 课程设计报告和总结 指导教师(签字) 日期 年 月 日 教研室意见: 年 月 日 学生(签字): 接受任务时间: 年 月 日 注:任务书由指导教师填写。 课程设计(论文)指导教师成绩评定表 题目名称 二叉排序树与平衡二叉树的实现 评分项目 分值 得分 评价内涵 工作 表现 20% 01 学习态度 6 遵守各项纪律,工作刻苦努力,具有良好的科学工作态度。 02 科学实践、调研 7 通过实验、试验、查阅文献、深入生产实践等渠道获取与课程设计有关的材料。 03 课题工作量 7 按期圆满完成规定的任务,工作量饱满。 能力 水平 35% 04 综合运用知识的能力 10 能运用所学知识和技能去发现与解决实际问题,能正确处理实验数据,能对课题进行理论分析,得出有价值的结论。 05 应用文献的能力 5 能独立查阅相关文献和从事其他调研;能提出并较好地论述课题的实施方案;有收集、加工各种信息及获取新知识的能力。 06 设计(实验)能力,方案的设计能力 5 能正确设计实验方案,独立进行装置安装、调试、操作等实验工作,数据正确、可靠;研究思路清晰、完整。 07 计算及计算机应用能力 5 具有较强的数据运算与处理能力;能运用计算机进行资料搜集、加工、处理和辅助设计等。 08 对计算或实验结果的分析能力(综合分析能力、技术经济分析能力) 10 具有较强的数据收集、分析、处理、综合的能力。 成果 质量 45% 09 插图(或图纸)质量、篇幅、设计(论文)规范化程度 5 符合本专业相关规范或规定要求;规范化符合本文件第五条要求。 10 设计说明书(论文)质量 30 综述简练完整,有见解;立论正确,论述充分,结论严谨合理;实验正确,分析处理科学。 11 创新 10 对前人工作有改进或突破,或有独特见解。 成绩 指导教师评语 指导教师签名: 年 月 日 摘要及关键字 本程序中的数据采用“树形结构”作为其数据结构。具体采用的是“二叉排序树”。 二叉排序树(又称二叉查找树):(1)若左子树不空,则左子树上所有节点的值均小于它的根结点的值;(2)若右子树不空,则右子树上所有节点均大于它的根结点的值;(3)它的左右子树分别为二叉排序树。 二叉平衡树:若不是空树,则(1)左右子树都是平衡二叉树;(2)左右子树的深度之差的绝对值不超过1。 本次实验是利用二叉排序树和平衡二叉树达到以下目的:(1)以回车('\n')为输入结束标志,输入数列L,生成一棵二叉排序树T;(2)对二叉排序树T作中序遍历,输出结果;(3)计算二叉排序树T查找成功的平均查找长度,输出结果; (4)输入元素x,查找二叉排序树T,若存在含x的结点,则删该结点,并作中序遍历(执行操作2);否则输出信息“无x”;(5)用数列L,生成平衡的二叉排序树BT:当插入新元素之后,发现当前的二叉排序树BT不是平衡的二叉排序树,则立即将它转换成新的平衡的二叉排序树BT; (6)计算平衡的二叉排序树BT的平均查找长度,输出结果。 关键字:数列L,结点,二叉排序树,平衡二叉树        目录 摘要…………………………………………………………………………… 3 1 绪论………………………………………………………………………… 5 1.1 课程设计的目的…………………………………………………………… 5 1.2 相关知识的阐述…………………………………………………………… 5 1.2.1一位数组的存储结构…………………………………………………… 5 1.2.2建立二叉排序树……………………………………………………… 5 1.2.3中序遍历二叉树………………………………………………………… 5 1.2.4平均查找长度…………………………………………………………… 6 1.2.5平均二叉树(AVL树)…………………………………………………… 6 1.2.6平衡因子………………………………………………………………… 7 1.2.7平衡二叉树的调整方法…………………………………………………… 7 2 方案设计……………………………………………………………… 8 2.1 模块功能………………………………………………………………………8 3 算法设计…………………………………………………………………… 8 3.1 算法流程图…………………………………………………………………… 8 4 详细设计……………………………………………………………… 10 4.1 主程序………………………………………………………………… 10 4.2 定义二叉树结构……………………………………………………………… 11 4.3 建立二叉树…………………………………………………………………… 11 4.3.1二叉排序树的查找…………………………………………………………11 4.3.2二叉排序树的插入…………………………………………………………11 4.4 中序遍历…………………………………………………………………12 4.5 平均查找长度…………………………………………………………………12 4.6 删除节点…………………………………………………………………12 4.7 判断平衡二叉树……………………………………………………………… 13 5 调试分析………………………………………………………………………… 14 5.1 时间复杂度的分析………………………………………………………………14 5.2 运行结果………………………………………………………………… 14 5.3 结果分析………………………………………………………………… 15 6 课程设计总结…………………………………………………………………… 16 参考文献………………………………………………………………………… 17 1 绪论 1.1 课程设计的目的 (1)使学生进一步理解和掌握课堂上所学各种基本抽象数据类型的逻辑结构、存储结构和操作实现算法,以及它们在程序中的使用方法。 (2)使学生掌握软件设计的基本内容和设计方法,并培养学生进行规范化软件设计的能力。 (3)使学生掌握使用各种计算机资料和有关参考资料,提高学生进行程序设计的基本能力。 1.2 相关知识的阐述 1.2.1 一维数组的存储结构 建立二插排序树,首先用一个一维数组记录下读入的数据,然后再用边查找边插入的方式将数据一一对应放在完全二叉树相应的位置,为空的树结点用“0” 补齐。 1.2.2 建立二叉排序树 二叉排序树是一种动态树表。其特点是:树的结构通常不是一次生成的,而是在查找过程中,当树中不存在关键字等于给定值的节点时再进行插入。新插入的结点一定是一个新添加的叶子节点,并且是查找不成功时查找路径上访问的最后一个结点的左孩子或右孩子结点。 插入算法: 首先执行查找算法,找出被插结点的父亲结点; 判断被插结点是其父亲结点的左、右儿子。将被插结点作为叶子结点插入; 若二叉树为空,则首先单独生成根结点。 注意:新插入的结点总是叶子结点。 1.2.3 中序遍历二叉树 中序遍历二叉树算法的框架是: 若二叉树为空,则空操作; 否则(1)中序遍历左子树(L); (2)访问根结点(V); (3)中序遍历右子树(R)。 中序遍历二叉树也采用递归函数的方式,先访问左子树2i,然后访问根结点i,最后访问右子树2i+1.先向左走到底再层层返回,直至所有的结点都被访问完毕。 1.2.4 平均查找长度 计算二叉排序树的平均查找长度时,采用类似中序遍历的递归方式,用s记录总查找长度,j记录每个结点的查找长度,s置初值为0,采用累加的方式最终得到总查找长度s。平均查找长度就等于s/i(i为树中结点的总个数)。  假设在含有n(n>=1)个关键字的序列中,i个关键字小于第一个关键字,n-i-1个关键字大于第一个关键字,则由此构造而得的二叉排序树在n个记录的查找概率相等的情况下,其平均查找长度为:          ASL(n,i)=[1+i*(P(i)+1)+(n-i-1)(P(n-i-1)+1)]/n 其中P(i)为含有i个结点的二叉排序树的平均查找长度,则P(i)+1为查找左子树中每个关键字时所用比较次数的平均值,P(n-i-1)+1为查找右子树中每个关键字时所用比较次数的平均值。又假设表中n个关键字的排列是“随机”的,即任一个关键字在序列中将是第1个,或第2个,…,或第n个的概率相同,则可对上式从i等于0至n-1取平均值。最终会推导出:          当n>=2时,ASL(n)<=2(1+1/n)ln(n) 由此可见,在随机的情况下,二叉排序树的平均查找长度和log(n)是等数量级的。 另外,含有n个结点的二叉排序树其判定树不是惟一的。对于含有同样一组结点的表,由于结点插入的先后次序不同,所构成的二叉排序树的形态和深度也可能不同。 而在二叉排序树上进行查找时的平均查找长度和二叉树的形态有关:  ①在最坏情况下,二叉排序树是通过把一个有序表的n个结点依次插入而生成的,此时所得的二叉排序树蜕化为棵深度为n的单支树,它的平均查找长度和单链表上的顺序查找相同,亦是(n+1)/2。  ②在最好情况下,二叉排序树在生成的过程中,树的形态比较匀称,最终得到的是一棵形态与二分查找的判定树相似的二叉排序树,此时它的平均查找长度大约是lgn。  ③插入、删除和查找算法的时间复杂度均为O(lgn)。 1.2.5 平衡二叉树( AVL树 ) ①平衡二叉树(Balanced Binary Tree)是指树中任一结点的左右子树的高度大致相同。     ②任一结点的左右子树的高度均相同(如满二叉树),则二叉树是完全平衡的。通常,只要二叉树的高度为O(1gn),就可看作是平衡的。     ③平衡的二叉排序树指满足BST性质的平衡二叉树。     ④AVL树中任一结点的左、右子树的高度之差的绝对值不超过1。在最坏情况下,n个结点的AVL树的高度约为1.44lgn。而完全平衡的二叉树高度约为lgn,AVL树是最接近最优的。 1.2.6 平衡因子 二叉树上任一结点的左子树深度减去右子树的深度称为该结点的平衡因子,易知平衡二叉树中所有结点的因子只可能为0,-1和1。 平衡二叉排序树的在平衡因子绝对值等于2时开始调整到绝对值为1或0,在平衡因子绝对值为2时,二叉排序树会出现四种不同的情况的树形,因此这时需要分别单独讨论来降低平衡因子。 1.2.7 平衡二叉树的调整方法   平衡二叉树是在构造二叉排序树的过程中,每当插入一个新结点时,首先检查是否因插入新结点而破坏了二叉排序树的平衡性,若是,则找出其中的最小不平衡子树,在保持二叉排序树特性的前提下,调整最小不平衡子树中各结点之间的链接关系,进行相应的旋转,使之成为新的平衡子树。具体步骤如下: (1)每当插入一个新结点,从该结点开始向上计算各结点的平衡因子,即计算该结点的祖先结点的平衡因子,若该结点的祖先结点的平衡因子的绝对值均不超过1,则平衡二叉树没有失去平衡,继续插入结点; (2)若插入结点的某祖先结点的平衡因子的绝对值大于1,则找出其中最小不平衡子树的根结点; (3)判断新插入的结点与最小不平衡子树的根结点的关系,确定是哪种类型的调整; (4)如果是LL型或RR型,只需应用扁担原理旋转一次,在旋转过程中,如果出现冲突,应用旋转优先原则调整冲突;如果是LR型或LR型,则需应用扁担原理旋转两次,第一次最小不平衡子树的根结点先不动,调整插入结点所在子树,第二次再调整最小不平衡子树,在旋转过程中,如果出现冲突,应用旋转优先原则调整冲突; (5)计算调整后的平衡二叉树中各结点的平衡因子,检验是否因为旋转而破坏其他结点的平衡因子,以及调整后的平衡二叉树中是否存在平衡因子大于1的结点。 2 方案设计 2.1 模块功能 1.建立二叉树:要求以回车('\n')为输入结束标志,输入数列L,生成一棵二叉排序树T。 2.中序遍历并输出结果:要求将第一步建立的二叉树进行中序遍历,并将结果输出。 3.平均查找长度并输出:要求计算二叉排序树T查找成功的平均查找长度,输出结果。 4.删除节点:要求输入元素x,查找二叉排序树T,若存在含x的结点,则删该结点,并作中序遍历(执行操作2);否则输出信息“无x”。 5.生成平衡二叉树:要求用数列L,生成平衡的二叉排序树BT:当插入新元素之后,发现当前的二叉排序树BT不是平衡的二叉排序树,则立即将它转换成新的平衡的二叉排序树BT; 6.平均查找长度:计算平衡的二叉排序树BT的平均查找长度,输出结果。 3 算法设计 3.1 算法流程图 建立二叉树流程图: YES NO 主程序流程图: 中序遍历流程图: 删除节点流程图: 4 详细设计 4.1 主程序 void main() { node T=NULL; int num; int s=0,j=0,i=0; int ch=0; node p=NULL; printf("请输入一组数字并输入0为结束符:"); do{ scanf("%d",&num); if(!num) printf("你成功完成了输入!\n"); else insertBST(&T,num); }while(num); printf("\n\n---操作菜单---\n"); printf("\n 0: 退出" ); printf("\n 1: 中序遍历"); printf("\n 2: 平均查找长度"); printf("\n 3: 删除"); printf("\n 4: 判断是否是平衡二叉树"); while(ch==ch) { printf("\n 选择操作并继续:"); scanf("%d",&ch); switch(ch){ case 0: exit(0); /*0--退出*/ case 1: printf(" 中序遍历结果是:\n "); inorderTraverse(&T); break; case 2: s=0;j=0;i=0; calculateASL(&T,&s,&j,i); printf(" ASL=%d/%d",s,j); break; case 3: printf(" 请输入你想删除的数字:"); scanf("%d",&num); if(searchBST(T,num,NULL,&p)) { T=Delete(T,num); printf(" 你已成功删除该数字!\n "); inorderTraverse(&T); else printf(" 没有你想要删除的节点 %d!",num); break; case 4: i=0; balanceBST(T,&i); if(i==0) printf(" OK!这是平衡二叉树!"); else printf(" NO!"); break; default: printf("你的输入有误!请重新输入!\n"); break; } } } 4.2 定义二叉树结构 #include typedef struct Tnode { int data; struct Tnode *lchild,*rchild; }*node,BSTnode; 4.3 建立二叉树 4.3.1 二叉排序树的查找 searchBST(node t,int key,node f,node *p){ /*在根指针t所指二叉排序树中递归地查找其关键字等于key的数据元素,若查找成功,则指针p指向该数据元素节点,并返回(1),否则指针p指向查找路径上访问的最后一个节点并返回(0),指针f指向t的双亲,其初始调用值为NULL*/ if(!t) {*p=f;return (0);} /*查找不成功*/ else if(key==t->data) {*p=t;return (1);} /*查找成功*/ else if(keydata) searchBST(t->lchild,key,t,p); /*在左子树中继续查找*/ else searchBST(t->rchild,key,t,p); /*在右子树中继续查找*/ } 4.3.2 二叉排序树的插入 insertBST(node *t,int key){ /*当二叉排序树t中不存在关键字等于key的数据元素时,插入key并返回(1),否则返回(0)*/ node p=NULL,s=NULL; if(!searchBST(*t,key,NULL,&p)) /*查找不成功 */ { s=(node)malloc(sizeof(BSTnode)); s->data=key; s->lchild=s->rchild=NULL; if(!p) *t=s; /*被插入节点*s为新的根节点*/ else if(keydata) p->lchild=s; /*被插节点*s为左孩子*/ else p->rchild=s; /*被插节点*s为右孩子*/ return (1); } else return (0); /*树中已有关键字相同的节点,不再插入*/ } 4.4 中序遍历 inorderTraverse(node *t) /*中序遍历*/ { if(*t){ if(inorderTraverse(&(*t)->lchild)) { printf("%d ",(*t)->data); if(inorderTraverse(&(*t)->rchild)); } } else return(1); } 4.5 平均查找长度 calculateASL(node *t,int *s,int *j,int i) /*计算平均查找长度*/ {if(*t){ i++; *s=*s+i; if(calculateASL(&(*t)->lchild,s,j,i)) { (*j)++; if(calculateASL(&(*t)->rchild,s,j,i)) {i--; return(1);} } } else return(1); } 4.6 删除节点 node Delete(node t,int key) { /*若二叉排序树t中存在关键字等于key的数据元素时,则删除该数据元素节点 */ node p=t,q=NULL,s,f; while(p!=NULL) { if(p->data==key) break; q=p; if(p->data>key) p=p->lchild; else p=p->rchild; } if(p==NULL) return t; if(p->lchild==NULL) { if(q==NULL) t=p->rchild; else if(q->lchild==p) q->lchild=p->rchild; else q->rchild=p->rchild; free(p); } else{ f=p; s=p->lchild; while(s->rchild) { f=s; s=s->rchild; } if(f==p) f->lchild=s->lchild; else f->rchild=s->lchild; p->data=s->data; free (s); } return t; } 4.7 判断平衡二叉树 int balanceBST(node t,int *i) /*判断平衡二叉树*/ { int dep1,dep2; if(!t) return(0); else { dep1=balanceBST(t->lchild,i); dep2=balanceBST(t->rchild,i); } if((dep1-dep2)>1||(dep1-dep2)dep2) return(dep1+1); else return(dep2+1); } 5 调试分析 5.1 时间复杂度的分析 为了保证二叉排序树的高度为lgn,从而保证然二叉排序树上实现的插入、删除和查找等基本操作的时间复杂度为O(lgn)。 5.2 运行结果 图5.1.1 调试界面 在程序调试过程当中,编译时并没有报错,但是运行时总是出错,在查阅资料和同学的帮助下,发现程序未对数组初始化。添加数组初始化代码: s=(node)malloc(sizeof(BSTnode)) 输入一组数列,以结0结束: 图5.2.2运行界面一 中序遍历: 图5.2.3运行界面二 计算平均查找长度 图5.2.4运行界面三 删除已有结点: 图5.2.5运行界面四 删除失败: 图5.2.6运行界面五 判断是否是平衡二叉树: 图5.2.7运行界面六 5.3 结果分析 通过运行程序和严密的求证,运行结果无误,不过对于转换平衡二叉树和平衡二叉树平均查找长度未能实现,同时也无法实现图像显示。 6 课程设计总结 在这一周的课程设计中,其实对我来说还是收获颇多。这不光提高了我的程序设计能力,更为我的就业增加了筹码。对我们来说,独立完成这样课程设计是比较困难,其中包括模块的组成分析和模块功能的实现。最后我不得不从网上下载源程序,借助课本,困难地将几个模块串起来。最后终于完成了自己的课程设计。 这次实验中我也出现过一些比较严重的错误。在用一维数组顺序表结构编写程序时我错误的运用静态链表来实现函数功能。这是我对基本概念理解的模糊不清造成的。我原以为只要采用一维数组作为存储结构它就一定也是顺序表结构,而实质上这根本是两个不相干的概念。后来在同学的指点下我意识到自己的错误。不过收获也很不少。至少我又练习了运用静态链表来实现同样的功能,同时我也发现两者在很多函数上是互通的,只需稍作修改即可移植。 另外程序的不足之处是不能实现对0这个数字的存储,可以通过改变数字的存储结构方式来实现,如使用二叉链表来作为数据的存储结构,即可实现该功能。还有就是可能自己学的还不够,对于最后两个要求未能完成,不得不说这是自己学艺不精。 现在觉得以前我对数据结构的认识是那么的肤浅,因此我下定决心寒假一定好好的把数据结构复习一遍。而且本次课程设计不光增强了我程序调试的能力,还有在面对一个较大的程序要冷静,不要浮躁,先分析模块要实现的功能,再把模块划分,最后到一个一个得模块实现,并且要不断地练习,这样,一个大的程序对我来说将不成问题。 参考文献 [1]刘大有等,《数据结构》(C语言版),高等教育出版社 [2]严蔚敏等,《数据结构》(C语言版),清华大学出版社 [3]William Ford,William Topp,《Data Structure with C++》清华大学出版社 [4]苏仕华等,数据结构课程设计,机械工业出版社

大家在看

recommend-type

麒麟V10桌面SP1网卡驱动

参考博客:http://t.csdnimg.cn/le3an 银河麒麟V10(Kylin V10)是中国自主研发的一款操作系统,基于 Linux 内核。它是银河麒麟操作系统的最新版本,主要面向桌面和服务器环境。以下是银河麒麟V10的一些关键特点和功能: 1. 国产化设计 银河麒麟V10是由中国企业开发的操作系统,旨在支持国产硬件和软件,提升系统安全性和稳定性。它符合中国的相关法律法规和政策要求。 2. 用户界面 银河麒麟V10提供了友好的用户界面,类似于其他桌面操作系统,易于上手。它包括了多种桌面环境和应用程序,用户可以根据需求进行选择和配置。 3. 兼容性 银河麒麟V10兼容各种主流的 Linux 应用程序和工具,同时提供了对多种硬件的支持,包括各种 CPU 和 GPU。它还支持虚拟化技术,能够在虚拟环境中运行。 4. 安全性 系统内置了多种安全功能,包括数据加密、访问控制和系统监控。银河麒麟V10注重信息安全,提供了安全的操作环境,以保护用户数据和隐私。 5. 系统管理 银河麒麟V10提供了方便的系统管理工具,用户可以通过图形界面或命令行界面进行系统配置和管理。它还支持软
recommend-type

TPS54160实现24V转正负15V双输出电源AD设计全方案

TPS54160实现24V转正负15V双输出电源AD设计硬件原理PCB+封装库。全套资料使用Altium dsigner 16.1设计,可以给一些需要正负15V电源供电的运放使用。
recommend-type

大众 BAP 协议简介

刘工写的一份大众 奥迪 斯柯达车上用到的BAP协议简介,很清楚
recommend-type

RGB to YCrCb

RGB to YCrCb  RGB转换为YCrCb
recommend-type

深圳大学《数据结构》1-4章练习题

深圳大学《数据结构》1-4章练习题

最新推荐

recommend-type

二叉排序树的实现与基本操作

二叉排序树(Binary Sort Tree,BST),又称为二叉查找树,是一种特殊的二叉树数据结构,其每个节点都遵循以下三个关键...在实际应用中,通过平衡二叉排序树,如AVL树或红黑树,可以确保树保持相对平衡,从而提高性能。
recommend-type

用C语言编写二叉排序树

需要注意的是,这个简单的实现没有考虑错误处理和内存管理,例如在删除节点时可能需要重新平衡树以保持其排序特性,且在插入和删除后应检查树是否仍然保持二叉排序树的性质。在实际应用中,可能会使用更高级的数据...
recommend-type

基于OpenCV的人脸识别小程序.zip

【项目资源】: 包含前端、后端、移动开发、操作系统、人工智能、物联网、信息化管理、数据库、硬件开发、大数据、课程资源、音视频、网站开发等各种技术项目的源码。 包括STM32、ESP8266、PHP、QT、Linux、iOS、C++、Java、python、web、C#、EDA、proteus、RTOS等项目的源码。 【项目质量】: 所有源码都经过严格测试,可以直接运行。 功能在确认正常工作后才上传。 【适用人群】: 适用于希望学习不同技术领域的小白或进阶学习者。 可作为毕设项目、课程设计、大作业、工程实训或初期项目立项。 【附加价值】: 项目具有较高的学习借鉴价值,也可直接拿来修改复刻。 对于有一定基础或热衷于研究的人来说,可以在这些基础代码上进行修改和扩展,实现其他功能。 【沟通交流】: 有任何使用上的问题,欢迎随时与博主沟通,博主会及时解答。 鼓励下载和使用,并欢迎大家互相学习,共同进步。。内容来源于网络分享,如有侵权请联系我删除。另外如果没有积分的同学需要下载,请私信我。
recommend-type

精选毕设项目-宅男社区.zip

精选毕设项目-宅男社区
recommend-type

探索zinoucha-master中的0101000101奥秘

资源摘要信息:"zinoucha:101000101" 根据提供的文件信息,我们可以推断出以下几个知识点: 1. 文件标题 "zinoucha:101000101" 中的 "zinoucha" 可能是某种特定内容的标识符或是某个项目的名称。"101000101" 则可能是该项目或内容的特定代码、版本号、序列号或其他重要标识。鉴于标题的特殊性,"zinoucha" 可能是一个与数字序列相关联的术语或项目代号。 2. 描述中提供的 "日诺扎 101000101" 可能是标题的注释或者补充说明。"日诺扎" 的含义并不清晰,可能是人名、地名、特殊术语或是一种加密/编码信息。然而,由于描述与标题几乎一致,这可能表明 "日诺扎" 和 "101000101" 是紧密相关联的。如果 "日诺扎" 是一个密码或者编码,那么 "101000101" 可能是其二进制编码形式或经过某种特定算法转换的结果。 3. 标签部分为空,意味着没有提供额外的分类或关键词信息,这使得我们无法通过标签来获取更多关于该文件或项目的信息。 4. 文件名称列表中只有一个文件名 "zinoucha-master"。从这个文件名我们可以推测出一些信息。首先,它表明了这个项目或文件属于一个更大的项目体系。在软件开发中,通常会将主分支或主线版本命名为 "master"。所以,"zinoucha-master" 可能指的是这个项目或文件的主版本或主分支。此外,由于文件名中同样包含了 "zinoucha",这进一步确认了 "zinoucha" 对该项目的重要性。 结合以上信息,我们可以构建以下几个可能的假设场景: - 假设 "zinoucha" 是一个项目名称,那么 "101000101" 可能是该项目的某种特定标识,例如版本号或代码。"zinoucha-master" 作为主分支,意味着它包含了项目的最稳定版本,或者是开发的主干代码。 - 假设 "101000101" 是某种加密或编码,"zinoucha" 和 "日诺扎" 都可能是对其进行解码或解密的钥匙。在这种情况下,"zinoucha-master" 可能包含了用于解码或解密的主算法或主程序。 - 假设 "zinoucha" 和 "101000101" 代表了某种特定的数据格式或标准。"zinoucha-master" 作为文件名,可能意味着这是遵循该标准或格式的最核心文件或参考实现。 由于文件信息非常有限,我们无法确定具体的领域或背景。"zinoucha" 和 "日诺扎" 可能是任意领域的术语,而 "101000101" 作为二进制编码,可能在通信、加密、数据存储等多种IT应用场景中出现。为了获得更精确的知识点,我们需要更多的上下文信息和具体的领域知识。
recommend-type

【Qt与OpenGL集成】:提升框选功能图形性能,OpenGL的高效应用案例

![【Qt与OpenGL集成】:提升框选功能图形性能,OpenGL的高效应用案例](https://img-blog.csdnimg.cn/562b8d2b04d343d7a61ef4b8c2f3e817.png) # 摘要 本文旨在探讨Qt与OpenGL集成的实现细节及其在图形性能优化方面的重要性。文章首先介绍了Qt与OpenGL集成的基础知识,然后深入探讨了在Qt环境中实现OpenGL高效渲染的技术,如优化渲染管线、图形数据处理和渲染性能提升策略。接着,文章着重分析了框选功能的图形性能优化,包括图形学原理、高效算法实现以及交互设计。第四章通过高级案例分析,比较了不同的框选技术,并探讨了构
recommend-type

ffmpeg 指定屏幕输出

ffmpeg 是一个强大的多媒体处理工具,可以用来处理视频、音频和字幕等。要使用 ffmpeg 指定屏幕输出,可以使用以下命令: ```sh ffmpeg -f x11grab -s <width>x<height> -r <fps> -i :<display>.<screen>+<x_offset>,<y_offset> output_file ``` 其中: - `-f x11grab` 指定使用 X11 屏幕抓取输入。 - `-s <width>x<height>` 指定抓取屏幕的分辨率,例如 `1920x1080`。 - `-r <fps>` 指定帧率,例如 `25`。 - `-i
recommend-type

个人网站技术深度解析:Haskell构建、黑暗主题、并行化等

资源摘要信息:"个人网站构建与开发" ### 网站构建与部署工具 1. **Nix-shell** - Nix-shell 是 Nix 包管理器的一个功能,允许用户在一个隔离的环境中安装和运行特定版本的软件。这在需要特定库版本或者不同开发环境的场景下非常有用。 - 使用示例:`nix-shell --attr env release.nix` 指定了一个 Nix 环境配置文件 `release.nix`,从而启动一个专门的 shell 环境来构建项目。 2. **Nix-env** - Nix-env 是 Nix 包管理器中的一个命令,用于环境管理和软件包安装。它可以用来安装、更新、删除和切换软件包的环境。 - 使用示例:`nix-env -if release.nix` 表示根据 `release.nix` 文件中定义的环境和依赖,安装或更新环境。 3. **Haskell** - Haskell 是一种纯函数式编程语言,以其强大的类型系统和懒惰求值机制而著称。它支持高级抽象,并且广泛应用于领域如研究、教育和金融行业。 - 标签信息表明该项目可能使用了 Haskell 语言进行开发。 ### 网站功能与技术实现 1. **黑暗主题(Dark Theme)** - 黑暗主题是一种界面设计,使用较暗的颜色作为背景,以减少对用户眼睛的压力,特别在夜间或低光环境下使用。 - 实现黑暗主题通常涉及CSS中深色背景和浅色文字的设计。 2. **使用openCV生成缩略图** - openCV 是一个开源的计算机视觉和机器学习软件库,它提供了许多常用的图像处理功能。 - 使用 openCV 可以更快地生成缩略图,通过调用库中的图像处理功能,比如缩放和颜色转换。 3. **通用提要生成(Syndication Feed)** - 通用提要是 RSS、Atom 等格式的集合,用于发布网站内容更新,以便用户可以通过订阅的方式获取最新动态。 - 实现提要生成通常需要根据网站内容的更新来动态生成相应的 XML 文件。 4. **IndieWeb 互动** - IndieWeb 是一个鼓励人们使用自己的个人网站来发布内容,而不是使用第三方平台的运动。 - 网络提及(Webmentions)是 IndieWeb 的一部分,它允许网站之间相互提及,类似于社交媒体中的评论和提及功能。 5. **垃圾箱包装/网格系统** - 垃圾箱包装可能指的是一个用于暂存草稿或未发布内容的功能,类似于垃圾箱回收站。 - 网格系统是一种布局方式,常用于网页设计中,以更灵活的方式组织内容。 6. **画廊/相册/媒体类型/布局** - 这些关键词可能指向网站上的图片展示功能,包括但不限于相册、网络杂志、不同的媒体展示类型和布局设计。 7. **标签/类别/搜索引擎** - 这表明网站具有内容分类功能,用户可以通过标签和类别来筛选内容,并且可能内置了简易的搜索引擎来帮助用户快速找到相关内容。 8. **并行化(Parallelization)** - 并行化在网站开发中通常涉及将任务分散到多个处理单元或线程中执行,以提高效率和性能。 - 这可能意味着网站的某些功能被设计成可以同时处理多个请求,比如后台任务、数据处理等。 9. **草稿版本+实时服务器** - 草稿版本功能允许用户保存草稿并能在需要时编辑和发布。 - 实时服务器可能是指网站采用了实时数据同步的技术,如 WebSockets,使用户能够看到内容的实时更新。 ### 总结 上述信息展示了一个人在个人网站开发过程中所涉及到的技术和功能实现,包括了环境配置、主题设计、内容管理和用户体验优化。从使用Nix-shell进行环境隔离和依赖管理到实现一个具有高级功能和良好用户体验的个人网站,每个技术点都是现代Web开发中的关键组成部分。
recommend-type

Qt框选功能的国际化实践:支持多语言界面的核心技术解析

![Qt框选功能的国际化实践:支持多语言界面的核心技术解析](https://opengraph.githubassets.com/1e33120fcc70e1a474ab01c7262f9ee89247dfbff9cf5cb5b767da34e5b70381/LCBTS/Qt-read-file) # 摘要 本文系统地探讨了Qt框架下多语言界面设计与国际化的实现原理和技术细节。首先介绍了Qt国际化框架的基础知识和多语言界面设计的基本原理,包括文本处理、资源文件管理、核心API的应用等。随后,文章详细阐述了设计可翻译用户界面、动态语言切换和界面更新以及测试和调试多语言界面的实践技巧。深入理解
recommend-type

内网如何运行docker pull mysql:5.7

要在内网中运行Docker的pull命令来获取MySQL 5.7镜像,可以按照以下步骤进行操作: 1. 确保在内网中的计算机上安装了Docker。 2. 打开终端或命令提示符,并使用以下命令登录到Docker镜像仓库: ```shell docker login <repository> ``` 将`<repository>`替换为MySQL镜像仓库的地址,例如`mysql`或`docker.io/mysql`。 3. 输入用户名和密码以登录到镜像仓库。 4. 使用以下命令从镜像仓库拉取MySQL 5.7镜像: ```shell docker pull <repository>/my