class myDataset(Dataset): def __init__(self, csv_file, txt_file, root_dir, other_file): self.csv_data = pd.read_csv(csv_file) with open(txt_file, 'r') as f: data_list = f.readlines() self.txt_data = data_list self.root_dir = root_dir def __ien__(self): return len(self.csv_data) def __getitem__(self, idx): data = (self.csv_data[idx], self.txt_data[idx]) return data
时间: 2024-04-17 09:24:35 浏览: 138
RandomizableClusterer.java.tar.gz_Weka 聚类_java cluster package_w
在您提供的代码中,有两个地方出现了错误。
首先,`__ien__` 应该是 `__len__`,表示获取数据集的长度。修正后的代码如下:
```python
import pandas as pd
from torch.utils.data import Dataset
class myDataset(Dataset):
def __init__(self, csv_file, txt_file, root_dir, other_file):
self.csv_data = pd.read_csv(csv_file)
with open(txt_file, 'r') as f:
data_list = f.readlines()
self.txt_data = data_list
self.root_dir = root_dir
def __len__(self):
return len(self.csv_data)
def __getitem__(self, idx):
data = (self.csv_data.iloc[idx], self.txt_data[idx])
return data
```
其次,在 `__getitem__` 方法中,您正在尝试使用索引访问 `self.csv_data` 和 `self.txt_data`,这样会导致错误。要正确访问数据,请使用 `.iloc` 用于 DataFrame 的索引,以及使用索引访问列表。修正后的代码如下:
```python
import pandas as pd
from torch.utils.data import Dataset
class myDataset(Dataset):
def __init__(self, csv_file, txt_file, root_dir, other_file):
self.csv_data = pd.read_csv(csv_file)
with open(txt_file, 'r') as f:
data_list = f.readlines()
self.txt_data = data_list
self.root_dir = root_dir
def __len__(self):
return len(self.csv_data)
def __getitem__(self, idx):
data = (self.csv_data.iloc[idx], self.txt_data[idx])
return data
```
这样,您的代码应该能够正常运行了。请注意,我假设您使用了 PyTorch 的 `Dataset` 类来实现您自己的数据集类。如果您使用其他深度学习框架或库,可能需要相应地调整代码。
阅读全文