python平稳小波变换
时间: 2023-10-10 21:12:08 浏览: 135
平稳小波变换(Stationary Wavelet Transform,SWT)是一种小波变换的方法,它在时间和频率上都具有局部性质。与传统的连续小波变换(CWT)相比,平稳小波变换将尺度参数离散化,并且在每个尺度上进行平移,从而使得变换后的系数具有相同的时间间隔。这样可以方便地进行信号分析和处理。
在Python中,可以使用PyWavelets库来实现平稳小波变换。以下是一个Python示例代码:
```python
import pywt
import numpy as np
# 定义信号
data = np.random.randn(1000)
# 设置小波族和尺度
wavelet = 'db4'
level = 4
# 进行平稳小波变换
coeffs = pywt.swt(data, wavelet, level)
# 获取近似系数和细节系数
approx_coeffs = coeffs<span class="em">1</span><span class="em">2</span><span class="em">3</span>
#### 引用[.reference_title]
- *1* *2* [时间序列信号处理(五)——小波变换python实现](https://blog.csdn.net/abc1234abcdefg/article/details/123517320)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"]
- *3* [python小波变换1-理论](https://blog.csdn.net/m0_67587806/article/details/128006400)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"]
[ .reference_list ]
阅读全文