tph1r403nl驱动
时间: 2023-11-26 18:49:03 浏览: 238
TPH1R403NL是一种贴片mos管,可以用于驱动电机等需要高功率的场合。以下是使用TPH1R403NL驱动电机的步骤:
1.将TPH1R403NL连接到电路板上,根据需要连接其他元件,例如电机和电源。
2.使用控制器向TPH1R403NL发送PWM信号,控制电机的转速和方向。
3.根据需要进行电流保护和过热保护等操作,以确保电路的安全性和可靠性。
以下是使用TPH1R403NL驱动电机的Python代码示例:
```python
import RPi.GPIO as GPIO
import time
# 设置GPIO模式
GPIO.setmode(GPIO.BOARD)
# 设置引脚号
PWM_PIN = 12
DIR_PIN = 16
# 设置PWM频率和占空比
PWM_FREQ = 1000
PWM_DUTY = 50
# 初始化引脚
GPIO.setup(PWM_PIN, GPIO.OUT)
GPIO.setup(DIR_PIN, GPIO.OUT)
# 设置PWM信号
pwm = GPIO.PWM(PWM_PIN, PWM_FREQ)
pwm.start(PWM_DUTY)
# 设置电机方向
GPIO.output(DIR_PIN, GPIO.HIGH)
# 等待一段时间
time.sleep(5)
# 停止PWM信号
pwm.stop()
# 清理GPIO引脚
GPIO.cleanup()
```
相关问题
tph yolov5
TPH-YOLOv5是一种改进的YOLOv5模型,用于无人机捕获场景目标检测。它在YOLOv5基线代码的基础上进行了修改,专注于VisDrone2021数据集。该模型采用了Transformer编码块来替代YOLOv5原始版本中的卷积块和CSP瓶颈块。此外,TPH-YOLOv5还增加了一个用于微小物体检测的预测头,以处理目标的大尺度方差。这个预测头由低层高分辨率的特征图生成,对微小物体更加敏感,从而提高了对微小物体的检测性能。TPH-YOLOv5还集成了CBAM模块来帮助网络在大区域覆盖的图像中找到感兴趣的区域。通过这些改进,TPH-YOLOv5在VisDrone2021测试挑战数据集上达到了很好的性能,比DPNetV3的性能提高了1.81%。<span class="em">1</span><span class="em">2</span><span class="em">3</span>
#### 引用[.reference_title]
- *1* [TPH-YOLOv5用于无人机捕获场景目标检测](https://download.csdn.net/download/weixin_44911037/86823848)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 33.333333333333336%"]
- *2* [TPH-YOLOv5简述](https://blog.csdn.net/qq_40402444/article/details/121166319)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 33.333333333333336%"]
- *3* [TPH-YOLOv5](https://blog.csdn.net/m0_47405013/article/details/127071563)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 33.333333333333336%"]
[ .reference_list ]
TPH-YOLOv5
TPH-YOLOv5是一种改进的目标检测模型,它在无人机捕获场景上展现出了良好的性能和可解释性。在VisDrone2021数据集上的实验结果显示,TPH-YOLOv5的平均精度(AP)为39.18%,比之前的SOTA方法(DPNetV3)提高了1.81%。在VisDrone Challenge 2021中,TPH-YOLOv5相比于YOLOv5提高了约7%的性能。<span class="em">1</span><span class="em">2</span><span class="em">3</span>
#### 引用[.reference_title]
- *1* *3* [详细解读TPH-YOLOv5 | 让目标检测任务中的小目标无处遁形](https://blog.csdn.net/qq_42722197/article/details/125214116)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"]
- *2* [TPH-YOLOv5: (中文翻译)](https://blog.csdn.net/weixin_42182534/article/details/123479460)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"]
[ .reference_list ]
阅读全文