data = dict( samples_per_gpu=4, workers_per_gpu=4, train=dict( type=dataset_type, data_root=data_root, img_dir='JPEGImages', ann_dir='SegmentationClass', split='ImageSets/Segmentation/train.txt', pipeline=train_pipeline), val=dict( type=dataset_type, data_root=data_root, img_dir='JPEGImages', ann_dir='SegmentationClass', split='ImageSets/Segmentation/val.txt', pipeline=test_pipeline), test=dict( type=dataset_type, data_root=data_root, img_dir='JPEGImages', ann_dir='SegmentationClass', split='ImageSets/Segmentation/val.txt', pipeline=test_pipeline))解释一下这段代码
时间: 2024-04-18 20:31:39 浏览: 185
这段代码是一个数据配置字典,用于定义数据加载和预的相关参数。
首先,它定义了每个GPU上的样本数和工作线程数,分别为`samples_per_gpu=4`和`workers_per_gpu=4`。
接下来,它定义了三个数据集:训练集、验证集和测试集。每个数据集都有以下共同的属性:
- `type`:指定数据集类型,例如目标检测、语义分割等。
- `data_root`:指定数据集存储的根目录。
- `img_dir`:指定图像存放的目录。
- `ann_dir`:指定标注信息存放的目录。
- `split`:指定图像和标注信息之间的对应关系,如训练集、验证集或测试集的图像列表文件路径。
- `pipeline`:指定数据预处理的流程,包括一系列的操作(如resize、随机翻转、颜色增强等)。
对于训练集,它使用了`train_pipeline`作为数据预处理流程。对于验证集和测试集,它们分别使用了`test_pipeline`作为数据预处理流程。
通过这个数据配置字典,可以方便地定义和管理不同数据集的加载和预处理过程。这样,在训练、验证和测试过程中,可以直接使用这些配置来构建相应的数据加载器,并按照预定义的流程进行数据预处理。
相关问题
dataset_type = 'PascalVOCDataset' data_root = './data/VOCdevkit/VOC2012' img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) crop_size = (512, 512) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations'), dict(type='Resize', img_scale=(2048, 512), ratio_range=(0.5, 2.0)), dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75), dict(type='RandomFlip', prob=0.5), dict(type='PhotoMetricDistortion'), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size=crop_size, pad_val=0, seg_pad_val=255), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_semantic_seg']), ] test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=(2048, 512), img_ratios=[0.5, 0.75, 1.0, 1.25, 1.5, 1.75], flip=False, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='RandomFlip'), dict(type='Normalize', **img_norm_cfg), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ]) ] data = dict( samples_per_gpu=4, workers_per_gpu=4, train=dict( type=dataset_type, data_root=data_root, img_dir='JPEGImages', ann_dir='SegmentationClass', split='ImageSets/Segmentation/train.txt', pipeline=train_pipeline), val=dict( type=dataset_type, data_root=data_root, img_dir='JPEGImages', ann_dir='SegmentationClass', split='ImageSets/Segmentation/val.txt', pipeline=test_pipeline), test=dict( type=dataset_type, data_root=data_root, img_dir='JPEGImages', ann_dir='SegmentationClass', split='ImageSets/Segmentation/val.txt', pipeline=test_pipeline))这个代码中的pineline是可以不用改的吗
在这个代码中,train_pipeline和test_pipeline是用于定义数据预处理流程的列表,它们包含了一系列的预处理操作。如果你的数据集与Pascal VOC数据集的结构和要求相同,那么这两个pipeline是可以不用改动的。
但是,如果你的数据集与Pascal VOC数据集有所不同,你可能需要对pipeline进行适当的修改。例如,如果你的数据集的图像尺寸与crop_size不同,你可能需要修改Resize和RandomCrop的参数以适应你的数据集。另外,如果你的数据集的类别数量不同,你可能需要修改Collect中的keys参数以适应你的标注数据。
总之,根据你的数据集的特点和需求,你可能需要对pipeline进行一些修改。
For Gradient Descent, we calculated the gradients for each sample individually. To improve the convergence behavior and to speed up the training process, we now consider batches of gradients. This stabilizes the convergence and prevents the parameters from being push in one direction and directly afterwards being pulled in the opposite direction. Therefore, we can use the gradient descent implementation and just swap the data loader to use the batched variant. The bad thing is that we need to iterate now multiple times over the dataset.帮我补全下面的代码。 net = ... epochs = 10 optimizer = GD(net.parameters(), 0.02) losses, states = ... fig = plot_losses(losses) conf_pltly() init_notebook_mode(connected=False) iplot(fig)
Sure! Here's the completed code:
```
net = ... # define your neural network architecture
epochs = 10
optimizer = GD(net.parameters(), 0.02) # define the optimizer
# define your batch size and create a data loader that batches the data
batch_size = 32
data_loader = DataLoader(dataset, batch_size=batch_size, shuffle=True)
losses, states = [], []
for epoch in range(epochs):
running_loss = 0.0
for i, batch in enumerate(data_loader):
optimizer.zero_grad() # zero the parameter gradients
# forward + backward + optimize
outputs = net(batch['input'])
loss = loss_fn(outputs, batch['target'])
loss.backward()
optimizer.step()
# track the loss and state of the network
running_loss += loss.item()
losses.append(running_loss / ((i+1) * batch_size))
states.append(copy.deepcopy(net.state_dict()))
# plot the losses over training
fig = plot_losses(losses)
conf_pltly()
init_notebook_mode(connected=False)
iplot(fig)
```
Note that in this code, we've added a data loader that batches the data into sets of `batch_size` samples. We then iterate over this data loader, computing the gradients and updating the parameters for each batch. We also track the loss and network state over time, and use these to plot the loss curve at the end of training.
阅读全文