xdma Linux代码

时间: 2024-09-03 13:00:15 浏览: 30
XDMA (eXtensible Direct Memory Access) 是Linux内核中一种高级的内存映射功能,它允许设备驱动程序直接从用户空间传输数据,而无需通过常规的系统调用,提高了性能。在Linux代码中,XDMA通常与硬件加速器如网络卡、FPGA或者其他需要高速数据传输的设备相关联。 Linux下的XDMA涉及到的主要部分包括: 1. **内核模块**:`linux/dma-mapping.h` 和 `dmaengine.h` 等头文件定义了相关的数据结构和函数,用于描述和管理 DMA 转换(channels)和内存区域。 2. **device driver**:设备驱动需要包含对`struct dma_chan` 的操作,比如创建通道、分配缓冲区等,并在`dma_map_sg()` 和`dma_unmap_sg()` 函数中完成内存映射和卸载。 3. **设备文件系统(sysfs)**:提供了一个用户空间访问DMA配置的接口,例如查看和控制通道状态。 4. **中断处理**:当DMA操作完成后,通常会触发一个中断,驱动程序会在中断上下文中完成数据处理并清理资源。 要编写XDMA代码,你需要熟悉Linux内核编程,了解设备驱动的开发流程,以及如何利用dma_direct API。同时,具体的实现会依赖于你的硬件平台。
相关问题

xdma linux arm

xdma是一种高性能数据传输协议,可以在计算机系统中实现快速的数据传输。Linux是一个开源操作系统,广泛应用于各种计算机设备和嵌入式系统。ARM是一种基于RISC架构的处理器架构,广泛应用于移动设备和嵌入式系统中。 在Linux ARM系统中,使用xdma可以实现高速数据传输。xdma基于DMA(直接内存访问)技术,通过将数据直接传输到内存中,绕过CPU的复制过程,从而提高了数据传输的速度和效率。这在需要大量数据处理的应用中特别有用,比如图像处理、音视频处理等。 使用xdma在Linux ARM系统中进行数据传输需要进行一些配置。首先,需要安装xdma驱动程序,并确保驱动程序与系统硬件兼容。然后,可以通过编写代码或使用现有的库函数调用来实现数据传输操作。通过配置适当的参数,如传输大小、方向和目标地址等,可以控制数据传输的行为。 在数据传输过程中,xdma会负责管理数据传输的流程和缓冲区,确保数据能够正确地从源传输到目标。它可以通过中断机制来处理传输错误或完成的通知,以及提供监控和统计信息。 总结而言,xdma linux arm是在Linux ARM系统中使用xdma实现高速数据传输的一种方案。通过使用xdma,可以有效地提高数据传输的速度和效率,从而满足需要快速数据处理的应用需求。

linux XDMA驱动程序代码

下面是一个简单的 Linux XDMA 驱动程序的代码示例: ``` #include <linux/module.h> #include <linux/init.h> #include <linux/platform_device.h> #include <linux/of.h> #include <linux/io.h> #include <linux/dmaengine.h> #include <linux/dma-mapping.h> // XDMA 寄存器的偏移量 #define XDMA_CTRL_OFFSET 0x00 #define XDMA_STATUS_OFFSET 0x04 #define XDMA_SRC_ADDR_OFFSET 0x08 #define XDMA_DEST_ADDR_OFFSET 0x0C #define XDMA_TRANSFER_LEN_OFFSET 0x10 // XDMA 寄存器的位域定义 #define XDMA_CTRL_START_BIT 0 #define XDMA_CTRL_RESET_BIT 1 #define XDMA_STATUS_DONE_BIT 0 struct xdma_device { struct platform_device *pdev; void __iomem *regs; dma_addr_t src_phys; dma_addr_t dest_phys; size_t len; struct dma_chan *chan; }; static void xdma_transfer_complete(void *arg) { struct xdma_device *dev = arg; unsigned long flags; spin_lock_irqsave(&dev->chan->lock, flags); dma_cookie_complete(dev->chan, dev->cookie); spin_unlock_irqrestore(&dev->chan->lock, flags); } static int xdma_transfer(struct xdma_device *dev) { int ret; ret = dmaengine_prep_dma_memcpy(dev->chan, dev->dest_phys, dev->src_phys, dev->len, DMA_PREP_INTERRUPT | DMA_CTRL_ACK); if (ret < 0) { dev_err(&dev->pdev->dev, "dmaengine_prep_dma_memcpy failed: %d\n", ret); return ret; } dev->cookie = dmaengine_submit(dev->chan, &desc); dma_async_issue_pending(dev->chan); return 0; } static int xdma_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct xdma_device *xdma; struct resource *res; int ret; xdma = devm_kzalloc(dev, sizeof(*xdma), GFP_KERNEL); if (!xdma) return -ENOMEM; res = platform_get_resource(pdev, IORESOURCE_MEM, 0); xdma->regs = devm_ioremap_resource(dev, res); if (IS_ERR(xdma->regs)) return PTR_ERR(xdma->regs); xdma->src_phys = dma_map_single(dev, xdma->src, xdma->len, DMA_TO_DEVICE); if (dma_mapping_error(dev, xdma->src_phys)) { dev_err(dev, "dma_map_single failed for source\n"); return -ENOMEM; } xdma->dest_phys = dma_map_single(dev, xdma->dest, xdma->len, DMA_FROM_DEVICE); if (dma_mapping_error(dev, xdma->dest_phys)) { dev_err(dev, "dma_map_single failed for destination\n"); ret = -ENOMEM; goto unmap_src; } xdma->chan = dma_request_chan(dev, "dma0"); if (IS_ERR(xdma->chan)) { dev_err(dev, "dma_request_chan failed\n"); ret = PTR_ERR(xdma->chan); goto unmap_dest; } ret = xdma_transfer(xdma); if (ret < 0) { dev_err(dev, "xdma_transfer failed: %d\n", ret); goto release_chan; } return 0; release_chan: dma_release_channel(xdma->chan); unmap_dest: dma_unmap_single(dev, xdma->dest_phys, xdma->len, DMA_FROM_DEVICE); unmap_src: dma_unmap_single(dev, xdma->src_phys, xdma->len, DMA_TO_DEVICE); return ret; } static int xdma_remove(struct platform_device *pdev) { struct xdma_device *xdma = platform_get_drvdata(pdev); dmaengine_terminate_all(xdma->chan); dma_release_channel(xdma->chan); dma_unmap_single(&pdev->dev, xdma->dest_phys, xdma->len, DMA_FROM_DEVICE); dma_unmap_single(&pdev->dev, xdma->src_phys, xdma->len, DMA_TO_DEVICE); return 0; } static const struct of_device_id xdma_of_match[] = { { .compatible = "xlnx,axi-dma-1.00.a", }, { /* sentinel */ } }; MODULE_DEVICE_TABLE(of, xdma_of_match); static struct platform_driver xdma_driver = { .driver = { .name = "xdma", .of_match_table = xdma_of_match, }, .probe = xdma_probe, .remove = xdma_remove, }; module_platform_driver(xdma_driver); MODULE_AUTHOR("Your Name"); MODULE_DESCRIPTION("Simple XDMA Driver"); MODULE_LICENSE("GPL"); ``` 请注意,上述代码只是一个简单的示例,可能需要针对您的特定硬件进行修改和调整。建议您仔细阅读 Linux DMA 引擎的文档以及您的硬件的数据手册。

相关推荐

最新推荐

recommend-type

linux pcie详解.pdf

【Linux PCIe详解】 PCI(Peripheral Component Interconnect)总线是一种通用的计算机系统接口标准,它在计算机硬件领域占据着至关重要的地位。PCI总线规范旨在规范计算机系统中各种外围设备的连接方式,确保它们...
recommend-type

DMA/Bridge Subsystem for PCI Express v4.1 读书笔记 (中文) XDMA

DMA/Bridge Subsystem for PCI Express v4.1 读书笔记 (中文) XDMA 参考文档:PG195, https://github.com/Xilinx/dma_ip_drivers, https://support.xilinx.com/s/article/65443?language=en_US XDMA IP核的中文...
recommend-type

3-1_04米联客2020版FPGA PCIE通信方案(XDMA-win) MPSOC ZYNQ

【米联客2020版FPGA PCIE通信方案(XDMA-win) MPSOC ZYNQ】是一款基于赛灵思(Xilinx) UltraScale+ MPSOC架构的FPGA设计,用于实现高速PCI Express (PCIE)通信接口。MPSOC ZYNQ系统级芯片集成了可编程逻辑(FPGA)和多核...
recommend-type

Flex垃圾回收与内存管理:防止内存泄露

"Flex内存管理主要包括对垃圾回收机制的理解和如何预防内存泄露。Flex使用的ActionScript语言支持垃圾回收,但程序员仍需注意防止内存泄露问题。垃圾回收器自动回收不再被引用的对象,而对象间的引用传递是非基本类型的特性。了解并重视内存管理是避免问题的关键。" 在Flex编程中,内存管理是一个至关重要的方面,因为不当的内存管理可能导致程序性能下降甚至崩溃。ActionScript,Flex的主要编程语言,具备垃圾回收(Garbage Collection,简称GC)功能,这使得开发者无需手动释放内存。然而,尽管有GC,Flex程序员仍然需要理解其工作原理,以防止内存泄露。 垃圾回收机制在Flash Player中由垃圾回收器执行,这个后台进程会定期检查并释放不再被程序中任何活跃对象引用的对象所占用的内存。在AS中,对象之间的引用是基于引用计数的,删除一个变量仅意味着删除了一个引用,而非对象本身。如果一个对象没有被任何其他引用指向,那么垃圾回收器就会将其占用的内存释放。 区分基本类型和非基本类型是理解内存管理的关键。基本类型(如Boolean、String、Number、uint、int)的值在传递时是按值传递的,这意味着它们的副本会被创建和存储。而非基本类型的对象,如自定义类实例,是按引用传递的。这意味着多个变量可以引用同一个对象,改变其中一个变量的引用不会影响其他引用该对象的变量。 以下是一些可能导致内存泄露的情况和预防措施: 1. 循环引用:两个或更多对象互相引用,但不再被其他活跃对象引用。确保正确解除所有不再需要的引用,以允许垃圾回收器清理这些对象。 2. 弱引用:使用WeakReference类可以创建弱引用,这种引用不会阻止对象被垃圾回收。当需要保留对象但又不想阻止其被回收时,弱引用是一个好选择。 3. 事件监听器:未移除的事件监听器可能导致对象无法被回收。确保在不再需要监听事件时,使用removeEventListener方法移除监听器。 4. 长生命周期的对象持有短生命周期的对象:短生命周期的对象如果被长生命周期的对象持有,可能会导致内存泄露。评估和调整对象的生命周期,确保它们在不再需要时被正确释放。 5. 对象池和缓存:使用对象池可以复用对象,减少垃圾回收的压力。但是,必须妥善管理池中的对象,确保不再使用的对象能被正确释放。 通过深入理解这些概念,Flex开发者可以编写更高效、更稳定的代码,避免因内存泄露导致的问题。时刻关注内存管理,及时释放不再需要的资源,是提升Flex应用程序性能和稳定性的关键步骤。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

Java字符串格式化艺术:深入理解String.format方法的奥秘

![Java字符串格式化艺术:深入理解String.format方法的奥秘](https://img-blog.csdnimg.cn/8874f016f3cd420582f199f18c989a6c.png) # 1. Java字符串格式化的概述 Java字符串格式化是编程中常用的一种技术,它允许开发者根据特定的格式要求来构建、转换和输出字符串。随着编程实践的深入,合理运用字符串格式化可以极大地提升代码的可读性和用户界面的友好度。对于新手而言,字符串格式化可能看起来复杂难懂,但掌握其基本原理和方法,可以有效地解决日常开发中的诸多问题。本章将对Java字符串格式化进行概述,并引导读者了解其在J
recommend-type

abap快速生成call method

在ABAP (Advanced Business Application Programming) 中,"CALL METHOD" 是一种常用的函数调用方式,用于调用类的方法。如果你想快速生成调用某个方法的代码,通常你会按照以下步骤操作: 1. 首先,确保你知道你要调用的方法的名称、输入参数以及返回值类型(如果有的话)。例如,假设你有一个名为 `zmy_function` 的公共方法,它接受一个 `data` 对象作为参数并返回一个 `value` 类型的结果。 2. 使用 `DATA` 定义输入参数(如果有),如: ```abap DATA(myInput) TYPE you
recommend-type

Python编程规范与最佳实践

"Python编程规范" Python编程规范是编写高效、可读性强且易于维护的Python代码的重要指导原则。这些规范通常被称为PEP 008,它是Python社区广泛接受的风格指南。遵循这些规范有助于提高代码质量,使得代码更易于理解和协作。以下是一些核心的Python编程规范要点: 1. **缩进**:Python代码的缩进非常重要,因为它定义了代码块的结构。推荐使用4个空格作为每个级别的缩进,而不是使用制表符。这有助于保持代码在不同环境下的一致性。在Emacs的Python-mode中,可以自动检测并设置缩进为4个空格。 2. **空格与括号**:在函数调用、操作符和逗号周围使用空格,例如 `function(a, b)` 和 `if a == b:`。但不要在圆括号、方括号或花括号内部放置空格,如 `[a, b]` 和 `{key: value}`。 3. **注释**:使用清晰的注释来解释代码的功能和目的。单行注释应以 `#` 开头,多行注释可以用三引号 `"""` 包裹。注释应简洁明了,避免重复代码中的显而易见的信息。 4. **命名约定**:变量、函数和类的名称应遵循一定的规则。变量和函数名应使用小写字母和下划线,如 `my_variable` 和 `my_function`。类名应使用首字母大写的驼峰式命名,如 `MyClass`。 5. **空行**:使用空行分隔函数和类,以及逻辑相关的代码块。在同一逻辑块内的相关函数之间,通常不需要空行。 6. **文档字符串**:每个模块、类和函数都应有文档字符串,提供关于它们用途、参数、返回值等的详细信息。 7. **异常处理**:使用 `try/except` 语句处理可能的异常,但避免过于宽泛的捕获,应尽可能明确异常类型。 8. **代码长度**:尽量保持每行代码长度不超过79字符,以适应大多数开发环境的窗口大小。对于长表达式,可以考虑换行并使用背引号(`\)`)断行。 9. **模块导入**:模块导入应在文件顶部,且按照标准库、第三方库和本地模块的顺序排列。相同来源的模块应按字母顺序排序。 10. **测试**:编写单元测试以确保代码的正确性。使用 `unittest` 或 `pytest` 等测试框架,并遵循测试驱动开发(TDD)的原则。 11. **代码复用**:尽量减少代码重复,通过函数、类和模块实现代码的复用。避免复制粘贴代码,而是创建可重用的组件。 12. **面向对象编程**:利用Python的多态特性,避免过度使用条件判断,以提高代码的灵活性和可扩展性。 13. **简洁性**:追求代码的简洁和清晰,避免冗余。遵循“Pythonic”风格,即充分利用Python语言特性,使代码更自然地表达意图。 遵循这些规范将有助于提升Python代码的可读性和可维护性,促进团队间的有效合作。Python编程规范不仅是技术要求,也是良好编程习惯的体现,能帮助开发者写出更加优雅的代码。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

字符串与数据库交互优化:Java中SQL查询与字符串处理的最佳实践

![java string class](https://www.javastring.net/wp-content/uploads/java-string-constructors-1024x534.png) # 1. Java数据库交互基础回顾 ## 1.1 数据库交互的重要性 Java作为一种广泛使用的后端开发语言,其与数据库的交互能力直接关系到应用的性能和稳定性。掌握数据库交互的基本原理和最佳实践对于开发者来说至关重要,特别是在处理大量数据和复杂查询时。良好的数据库交互能力可以极大提升数据处理的效率,并且降低应用出现瓶颈的可能性。 ## 1.2 Java数据库交互技术概述 Ja