编写雅可比迭代法的程序,给定精度10^5,
时间: 2024-10-20 14:10:19 浏览: 23
General_method_general_迭代法_
雅可比迭代法是一种数值方法,用于寻找非线性方程组的根。它基于函数的一阶导数信息构建搜索方向,通常用于迭代优化过程。下面是一个简单的Python版本的雅可比迭代法示例,假设我们有一个一元二次方程组:
```python
import numpy as np
def jacobian(f, x, epsilon=1e-5): # 雅可比矩阵计算函数
def partial_derivative(func, var_index):
return (func(x + np.eye(len(x))[:, var_index] * epsilon) - func(x)) / epsilon
return np.stack([partial_derivative(f, i) for i in range(len(x))])
def newton_raphson_method(f, initial_guess, max_iterations=100, tolerance=1e-5):
x = initial_guess
iteration = 0
while True:
jac = jacobian(f, x)
dx = -np.linalg.solve(jac, f(x)) # 解雅可比方程得到步长
if abs(dx).max() < tolerance or iteration >= max_iterations:
break
x += dx
iteration += 1
return x, iteration
# 示例方程:f(x) = [x[0]**2 - 4, x[1]**2 - 9]
def equation_system(x):
return np.array([x[0]**2 - 4, x[1]**2 - 9])
initial_guess = np.array([2, 3]) # 初始猜测解
solution, num_steps = newton_raphson_method(equation_system, initial_guess)
print("Solution found:", solution)
print("Number of iterations:", num_steps)
阅读全文