改进代码,将测试,训练,验证,分清楚
时间: 2024-10-24 11:09:35 浏览: 13
为了更清晰地分离训练、验证和测试过程,可以将代码重构为几个独立的函数,并在主程序中调用这些函数。以下是改进后的代码:
```python
import os
import json
import numpy as np
import pandas as pd
from PIL import Image
import tensorflow as tf
from sklearn.model_selection import train_test_split
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Conv2D, MaxPooling2D, Flatten, Dense, Dropout
from tensorflow.keras.preprocessing.image import ImageDataGenerator
from tensorflow.keras.optimizers import Adam
from sklearn.metrics import f1_score, accuracy_score
# 加载数据集
def load_data(data_dir, label_path):
with open(label_path, 'r') as f:
labels_list = json.load(f)
labels = {item['文件名']: item['标签'] for item in labels_list if '文件名' in item and '标签' in item}
images = []
targets = []
for file_name, label in labels.items():
img_path = os.path.join(data_dir, file_name)
if not os.path.exists(img_path):
continue
img = Image.open(img_path).resize((128, 128))
img_array = np.array(img) / 255.0
images.append(img_array)
targets.append(label)
if len(images) == 0:
raise ValueError("No valid images found.")
return np.array(images), np.array(targets)
# 创建模型
def create_model(input_shape=(128, 128, 3)):
model = Sequential([
Conv2D(32, (3, 3), activation='relu', input_shape=input_shape),
MaxPooling2D((2, 2)),
Conv2D(64, (3, 3), activation='relu'),
MaxPooling2D((2, 2)),
Conv2D(128, (3, 3), activation='relu'),
MaxPooling2D((2, 2)),
Flatten(),
Dense(128, activation='relu'),
Dropout(0.5),
Dense(4, activation='softmax')
])
return model
# 评估模型
def evaluate_model(model, X, y):
predictions = model.predict(X)
predicted_labels = np.argmax(predictions, axis=1)
accuracy = accuracy_score(y, predicted_labels)
f1 = f1_score(y, predicted_labels, average='weighted')
print(f'Accuracy: {accuracy:.4f}')
print(f'F1 Score: {f1:.4f}')
return accuracy, f1
# 预测测试集并保存结果
def predict_and_save(model, test_data_dir, test_label_path, output_path, label_map):
test_images = []
test_file_names = []
with open(test_label_path, 'r') as f:
test_labels_list = json.load(f)
test_labels = {item['文件名']: item['标签'] for item in test_labels_list if '文件名' in item and '标签' in item}
for file_name in test_labels.keys():
img_path = os.path.join(test_data_dir, file_name)
if not os.path.exists(img_path):
continue
img = Image.open(img_path).resize((128, 128))
img_array = np.array(img) / 255.0
test_images.append(img_array)
test_file_names.append(file_name)
test_images = np.array(test_images)
predictions = model.predict(test_images)
predicted_labels = np.argmax(predictions, axis=1)
label_map_inv = {v: k for k, v in label_map.items()}
predicted_labels = [label_map_inv[label] for label in predicted_labels]
submission_df = pd.DataFrame({'文件名': test_file_names, '标签': predicted_labels})
submission_df.to_csv(output_path, index=False)
# 主程序
if __name__ == "__main__":
data_dir = "C:\\Users\\24067\\Desktop\\peach_split\\train"
label_path = "C:\\Users\\24067\\Desktop\\train_label.json"
# 加载训练数据
images, labels = load_data(data_dir, label_path)
# 标签映射
label_map = {'特级': 3, '一级': 2, '二级': 1, '三级': 0}
labels = np.array([label_map[label] for label in labels])
# 划分训练集和验证集
X_train, X_val, y_train, y_val = train_test_split(images, labels, test_size=0.2, random_state=42)
# 创建模型
model = create_model()
# 编译模型
model.compile(optimizer=Adam(learning_rate=0.001), loss='sparse_categorical_crossentropy', metrics=['accuracy'])
# 图像增强
datagen = ImageDataGenerator(
rotation_range=20,
width_shift_range=0.2,
height_shift_range=0.2,
horizontal_flip=True,
vertical_flip=True
)
# 训练模型
history = model.fit(datagen.flow(X_train, y_train, batch_size=32), epochs=1, validation_data=(X_val, y_val))
# 评估模型
evaluate_model(model, X_val, y_val)
# 测试集目录和标签路径
test_data_dir = "C:\\Users\\24067\\Desktop\\peach_split\\test"
test_label_path = "C:\\Users\\24067\\Desktop\\train_label.json"
output_path = "C:\\Users\\24067\\Desktop\\data\\submission.csv"
# 进行预测并保存结果
predict_and_save(model, test_data_dir, test_label_path, output_path, label_map)
```
### 改进点说明:
1. **模块化**:将不同的功能(加载数据、创建模型、评估模型、预测并保存结果)封装成独立的函数,使代码结构更加清晰。
2. **主程序入口**:使用 `if __name__ == "__main__":` 来定义主程序入口,确保脚本作为主程序运行时才执行特定的逻辑。
3. **参数传递**:将一些常量(如数据目录、标签路径等)提取到主程序中,方便修改和维护。
4. **注释**:增加了必要的注释,帮助理解每个函数的功能和参数。
这样,代码的可读性和可维护性得到了显著提升。
阅读全文