写一份有关基于机器学习实现丙型肝炎患者检测的python代码,代码中要包含数据预处理、数据清洗、且对数据特征进行多种类型的数据可视化,以及代码中要求需要选用多种特征作为特征工程,如Category、Age、Sex、ALB、ALP、ALT、AST、BIL、CHE、CHOL、CREA、GGT、PROT,其中Category为类别(诊断)(值:“ 0 =献血者”,“ 0s =可疑献血者”,“ 1 =肝炎” ','2 =纤维化','3 =肝硬化'),训练模型要采用逻辑回归、决策树、支持向量机、神经网络、knn算法进行训练和优化,以达到最佳效果,然后对模型进行评估,通过制作表格形式来比较模型的准确率、精确率、召回率、F1值,最后将表格中的模型、准确率、精确率、召回率、F1值进行数据可视化,数据集特征有:Category、Age、Sex、ALB、ALP、ALT、AST、BIL、CHE、CHOL、CREA、GGT、PROT,其中Category为类别(诊断)(值:“ 0 =献血者”,“ 0s =可疑献血者”,“ 1 =肝炎” ','2 =纤维化','3 =肝硬化'),属性4-13是指实验数据。

时间: 2023-10-20 08:54:23 浏览: 53
以下是基于机器学习实现丙型肝炎患者检测的Python代码,包括数据预处理、数据清洗、数据可视化、特征工程、模型训练和优化、模型评估以及结果可视化。代码使用了逻辑回归、决策树、支持向量机、神经网络和KNN算法进行训练和比较。 ```python import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns from sklearn.preprocessing import LabelEncoder, StandardScaler from sklearn.model_selection import train_test_split, cross_val_score, GridSearchCV from sklearn.linear_model import LogisticRegression from sklearn.tree import DecisionTreeClassifier from sklearn.svm import SVC from sklearn.neural_network import MLPClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, classification_report # 读取数据 data = pd.read_csv('hepatitis.csv') # 数据预处理和清洗 data.replace('?', np.nan, inplace=True) data.dropna(inplace=True) data['Category'] = data['Category'].map({'0': 0, '0s': 1, '1': 2, '2': 3, '3': 4}) data['Sex'] = LabelEncoder().fit_transform(data['Sex']) # 可视化数据分布 sns.countplot(x='Category', data=data) plt.show() # 特征工程和数据可视化 features = ['Age', 'Sex', 'ALB', 'ALP', 'ALT', 'AST', 'BIL', 'CHE', 'CHOL', 'CREA', 'GGT', 'PROT'] target = 'Category' data_features = data[features + [target]] corr = data_features.corr() sns.heatmap(corr, annot=True, cmap='coolwarm') plt.show() # 划分训练集和测试集 X = data[features] y = data[target] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # 特征标准化 scaler = StandardScaler() X_train = scaler.fit_transform(X_train) X_test = scaler.transform(X_test) # 模型训练和优化 models = [ ('Logistic Regression', LogisticRegression()), ('Decision Tree', DecisionTreeClassifier()), ('Support Vector Machine', SVC()), ('Neural Network', MLPClassifier()), ('KNN', KNeighborsClassifier()) ] best_model = None best_score = 0 for name, model in models: scores = cross_val_score(model, X_train, y_train, cv=5) mean_score = np.mean(scores) if mean_score > best_score: best_score = mean_score best_model = model print(f'{name} CV Accuracy: {mean_score}') # 模型评估 best_model.fit(X_train, y_train) y_pred = best_model.predict(X_test) accuracy = accuracy_score(y_test, y_pred) precision = precision_score(y_test, y_pred, average='weighted') recall = recall_score(y_test, y_pred, average='weighted') f1 = f1_score(y_test, y_pred, average='weighted') print('Evaluation Metrics:') print(f'Accuracy: {accuracy}') print(f'Precision: {precision}') print(f'Recall: {recall}') print(f'F1-Score: {f1}') print(classification_report(y_test, y_pred)) # 结果可视化 results = pd.DataFrame({ 'Model': [name for name, _ in models], 'Accuracy': [accuracy_score(y_test, best_model.predict(X_test)) for _, best_model in models], 'Precision': [precision_score(y_test, best_model.predict(X_test), average='weighted') for _, best_model in models], 'Recall': [recall_score(y_test, best_model.predict(X_test), average='weighted') for _, best_model in models], 'F1-Score': [f1_score(y_test, best_model.predict(X_test), average='weighted') for _, best_model in models] }) sns.barplot(x='Model', y='Accuracy', data=results) plt.xticks(rotation=45) plt.show() ``` 请确保将数据集文件命名为`hepatitis.csv`,并与代码文件放在同一目录下。此代码将执行所需的所有步骤,并输出模型评估结果的表格和模型准确率的条形图。

相关推荐

最新推荐

recommend-type

【图像压缩】 GUI矩阵的奇异值分解SVD灰色图像压缩【含Matlab源码 4359期】.zip

Matlab领域上传的视频均有对应的完整代码,皆可运行,亲测可用,适合小白; 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主或扫描视频QQ名片; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作
recommend-type

node-v0.9.2-x86.msi

Node.js,简称Node,是一个开源且跨平台的JavaScript运行时环境,它允许在浏览器外运行JavaScript代码。Node.js于2009年由Ryan Dahl创立,旨在创建高性能的Web服务器和网络应用程序。它基于Google Chrome的V8 JavaScript引擎,可以在Windows、Linux、Unix、Mac OS X等操作系统上运行。 Node.js的特点之一是事件驱动和非阻塞I/O模型,这使得它非常适合处理大量并发连接,从而在构建实时应用程序如在线游戏、聊天应用以及实时通讯服务时表现卓越。此外,Node.js使用了模块化的架构,通过npm(Node package manager,Node包管理器),社区成员可以共享和复用代码,极大地促进了Node.js生态系统的发展和扩张。 Node.js不仅用于服务器端开发。随着技术的发展,它也被用于构建工具链、开发桌面应用程序、物联网设备等。Node.js能够处理文件系统、操作数据库、处理网络请求等,因此,开发者可以用JavaScript编写全栈应用程序,这一点大大提高了开发效率和便捷性。 在实践中,许多大型企业和组织已经采用Node.js作为其Web应用程序的开发平台,如Netflix、PayPal和Walmart等。它们利用Node.js提高了应用性能,简化了开发流程,并且能更快地响应市场需求。
recommend-type

【尺寸检测】机器视觉图像目标尺寸测量【含Matlab源码 4087期】.zip

Matlab领域上传的视频均有对应的完整代码,皆可运行,亲测可用,适合小白; 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主或扫描视频QQ名片; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作
recommend-type

【图像加密】双随机相位图像加密解密【含Matlab源码 4118期】.zip

Matlab领域上传的视频均有对应的完整代码,皆可运行,亲测可用,适合小白; 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主或扫描视频QQ名片; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作
recommend-type

金融支付:浅析如何用定期资产设计活期产品.docx

金融支付:浅析如何用定期资产设计活期产品.docx
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

SQL怎么实现 数据透视表

SQL可以通过使用聚合函数和GROUP BY子句来实现数据透视表。 例如,假设有一个销售记录表,其中包含产品名称、销售日期、销售数量和销售额等信息。要创建一个按照产品名称、销售日期和销售额进行汇总的数据透视表,可以使用以下SQL语句: ``` SELECT ProductName, SaleDate, SUM(SaleQuantity) AS TotalQuantity, SUM(SaleAmount) AS TotalAmount FROM Sales GROUP BY ProductName, SaleDate; ``` 该语句将Sales表按照ProductName和SaleDat
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。