手写数字识别pytorch全连接实现
时间: 2023-11-12 08:08:12 浏览: 102
好的,关于手写数字识别的全连接实现,我可以给你提供一个简单的代码示例。首先,你需要准备好 MNIST 数据集,然后按照以下步骤进行操作:
1. 导入必要的库和数据集
```python
import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms
# 定义数据预处理方式
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])
# 加载训练集和测试集
train_dataset = datasets.MNIST('data', train=True, download=True, transform=transform)
test_dataset = datasets.MNIST('data', train=False, download=True, transform=transform)
# 定义批次大小
batch_size = 64
# 创建数据加载器
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=batch_size, shuffle=True)
```
2. 定义模型
```python
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.fc1 = nn.Linear(784, 512)
self.fc2 = nn.Linear(512, 256)
self.fc3 = nn.Linear(256, 10)
def forward(self, x):
x = x.view(-1, 784)
x = nn.functional.relu(self.fc1(x))
x = nn.functional.relu(self.fc2(x))
x = self.fc3(x)
return nn.functional.log_softmax(x, dim=1)
model = Net()
```
3. 定义损失函数和优化器
```python
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5)
```
4. 训练模型
```python
def train(epoch):
model.train()
for batch_idx, (data, target) in enumerate(train_loader):
optimizer.zero_grad()
output = model(data)
loss = criterion(output, target)
loss.backward()
optimizer.step()
if batch_idx % 100 == 0:
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
epoch, batch_idx * len(data), len(train_loader.dataset),
100. * batch_idx / len(train_loader), loss.item()))
for epoch in range(1, 11):
train(epoch)
```
5. 测试模型
```python
def test():
model.eval()
test_loss = 0
correct = 0
with torch.no_grad():
for data, target in test_loader:
output = model(data)
test_loss += criterion(output, target).item()
pred = output.argmax(dim=1, keepdim=True)
correct += pred.eq(target.view_as(pred)).sum().item()
test_loss /= len(test_loader.dataset)
print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
test_loss, correct, len(test_loader.dataset),
100. * correct / len(test_loader.dataset)))
test()
```
这样,一个简单的手写数字识别的全连接实现就完成了。如果你想要更深入地了解 PyTorch 的使用,可以参考官方文档或者其他教程。
阅读全文