matlab禁忌搜索算法解决tsp
时间: 2025-01-07 07:52:32 浏览: 8
### 使用 MATLAB 实现禁忌搜索算法解决 TSP 问题
#### 距离矩阵计算
为了实现禁忌搜索算法,首先需要构建城市之间的距离矩阵。这一步骤确保后续可以方便地计算路径总长度。
```matlab
function D = calculate_distance_matrix(citys)
n = size(citys, 1);
D = zeros(n, n);
for i = 1:n
for j = i+1:n
D(i, j) = sqrt(sum((citys(i, :) - citys(j, :)).^2));
D(j, i) = D(i, j);
end
end
end
```
#### 初始化参数设置
定义初始解、禁忌表大小以及其他控制参数:
```matlab
n = length(D); % 城市数量
tabu_list_length = round(sqrt(n)); % 禁忌表长度
max_iterations = 500; % 最大迭代次数
current_solution = randperm(n); % 随机初始化当前解
best_solution = current_solution;
best_cost = inf;
% 创建空的禁忌表
tabu_list = cell(tabu_list_length, 1);
for iter = 1:max_iterations
neighbors = generate_neighbors(current_solution, tabu_list, best_solution, D);
[~, next_index] = min([neighbors.Cost]);
next_solution = neighbors.Solution{next_index};
next_cost = neighbors.Cost(next_index);
if next_cost < best_cost
best_solution = next_solution;
best_cost = next_cost;
% 更新禁忌表
update_tabu_list(tabu_list, current_solution, next_solution);
end
current_solution = next_solution;
end
```
#### 生成邻居函数
此部分负责创建候选邻近解决方案集,并考虑禁忌条件筛选合适的移动方案。
```matlab
function neighbors = generate_neighbors(solution, tabu_list, best_solution, distance_matrix)
n = length(solution);
neighbor_solutions = {};
costs = [];
for i = 1:(n-1)
for j = (i+1):n
new_sol = solution;
temp = new_sol(i);
new_sol(i) = new_sol(j);
new_sol(j) = temp;
cost = evaluate_path(new_sol, distance_matrix);
isTabuMove = false;
for k = 1:length(tabu_list)
if ~isempty(tabu_list{k}) && ...
all(sort([new_sol(i), new_sol(j)]) == sort(tabu_list{k}))
isTabuMove = true;
break;
end
end
if ~isTabuMove || better_than_best(best_solution, cost, distance_matrix)
neighbor_solutions{end+1} = new_sol;
costs(end+1) = cost;
end
end
end
neighbors.Solution = neighbor_solutions;
neighbors.Cost = costs;
end
```
#### 辅助方法
评估路径成本并判断是否优于现有最佳解的方法如下所示:
```matlab
function cost = evaluate_path(path, dist_mat)
cost = sum(dist_mat(sub2ind(size(dist_mat), path([path, path(1)]'), circshift(path', 1))));
end
function flag = better_than_best(best_so_far, candidate_cost, dist_mat)
flag = false;
if isempty(best_so_far) || candidate_cost < evaluate_path(best_so_far, dist_mat)
flag = true;
end
end
```
#### 更新禁忌列表逻辑
当发现更优的新解时更新禁忌表中的记录。
```matlab
function update_tabu_list(list, old_state, new_state)
list = shift_down(list);
move_to_add = find_diff(old_state, new_state);
list{1} = move_to_add';
end
function diff = find_diff(a, b)
[~, ia] = ismember(b, a);
[~, ib] = ismember(a, b);
diff = [ia(ib==false)', ib(ia==false)'];
end
function shifted = shift_down(cell_array)
num_elements = numel(cell_array);
shifted(2:num_elements) = deal(cell_array(1:end-1));
shifted{1} = []; %#ok<UNRCH>
end
```
上述代码实现了基本版的禁忌搜索算法用于求解TSP问题[^1][^2][^3][^4]。
阅读全文