补充上述代码中的布谷鸟算法、粒子群算法和遗传算法,其中布谷鸟算法的步长在0.9~1.0,突变概率为0.05~0.25,候选解数为25,最大迭代次数为100。粒子群算法和遗传算法的参数采用最常用的默认值。
时间: 2024-04-19 16:25:29 浏览: 186
下面是对上述代码进行补充,包括布谷鸟算法、粒子群算法和遗传算法的具体实现。请注意,这里只是一个示例,实际应用中可能需要根据具体问题进行调整和改进。
```python
import random
import numpy as np
# 布谷鸟算法
def cuckoo_search(obj_func, num_nests, num_iterations):
step_size_min = 0.9
step_size_max = 1.0
mutation_prob_min = 0.05
mutation_prob_max = 0.25
num_candidates = 25
best_nest = None
for _ in range(num_iterations):
# 更新最好的鸟巢
if best_nest is None:
best_nest = np.random.uniform(low=0, high=1, size=2)
else:
for _ in range(num_candidates):
random_nest = best_nest + np.random.uniform(low=-1, high=1, size=2) * (step_size_max - step_size_min)
random_nest = np.clip(random_nest, 0, 1)
if obj_func(random_nest) < obj_func(best_nest):
best_nest = random_nest
# 更新步长和突变概率
step_size = step_size_min + (step_size_max - step_size_min) * random.random()
mutation_prob = mutation_prob_min + (mutation_prob_max - mutation_prob_min) * random.random()
# 随机选择一个蛋巢进行搜索
random_nest = np.random.uniform(low=0, high=1, size=2)
new_nest = random_nest + np.random.standard_normal(size=2) * step_size
new_nest = np.clip(new_nest, 0, 1)
# 如果新的蛋巢更优,则替换原来的蛋巢
if obj_func(new_nest) < obj_func(random_nest):
random_nest = new_nest
return best_nest
# 遗传算法
def genetic_algorithm(obj_func, population_size, num_generations):
best_individual = None
for _ in range(num_generations):
# 初始化种群
population = np.random.uniform(low=0, high=1, size=(population_size, 2))
# 计算适应度
fitness_scores = [obj_func(individual) for individual in population]
# 选择父代
parents = random.choices(population, weights=fitness_scores, k=population_size)
# 交叉和变异
offspring = []
for _ in range(population_size):
parent1, parent2 = random.sample(parents, 2)
child = (parent1 + parent2) / 2
child += np.random.standard_normal(size=2) * 0.01
offspring.append(child)
# 更新最佳个体
if best_individual is None:
best_individual = population[0]
else:
for individual in population:
if obj_func(individual) < obj_func(best_individual):
best_individual = individual
return best_individual
# 粒子群优化算法
def particle_swarm_optimization(obj_func, num_particles, num_iterations):
positions = np.random.uniform(low=0, high=1, size=(num_particles, 2))
velocities = np.random.uniform(low=0, high=1, size=(num_particles, 2))
global_best_position = positions[0]
individual_best_positions = positions.copy()
for _ in range(num_iterations):
inertia_weight = 0.8
cognitive_weight = 1.5
social_weight = 1.5
for i in range(num_particles):
velocities[i] = (inertia_weight * velocities[i] +
cognitive_weight * np.random.uniform(0, 1) * (individual_best_positions[i] - positions[i]) +
social_weight * np.random.uniform(0, 1) * (global_best_position - positions[i]))
positions[i] += velocities[i]
for i in range(num_particles):
if obj_func(positions[i]) < obj_func(individual_best_positions[i]):
individual_best_positions[i] = positions[i]
if obj_func(positions[i]) < obj_func(global_best_position):
global_best_position = positions[i]
return global_best_position
# 示例目标函数,这里使用一个简单的二维函数作为示例
def objective_function(x):
return np.sum(np.square(x))
# 使用集成框架进行优化
def integrated_optimization():
num_nests = 10
num_generations = 10
num_particles = 10
# 使用布谷鸟算法进行全局搜索
global_best_nest = cuckoo_search(objective_function, num_nests, num_generations)
# 使用遗传算法进行局部搜索
local_best_individual = genetic_algorithm(objective_function, num_nests, num_generations)
# 使用粒子群优化算法进行微调
final_solution = particle_swarm_optimization(objective_function, num_particles, num_generations)
print("Global best nest:", global_best_nest)
print("Local best individual:", local_best_individual)
print("Final solution:", final_solution)
# 运行集成优化框架
integrated_optimization()
```
请注意,这里只是一个示例,实际应用中可能需要根据具体问题进行调整和改进。同时,对于粒子群算法和遗传算法的参数设置,也可以根据具体问题和实验经验进行调整。
阅读全文